IMPLEMENTATION OF THE SALISH SEA AND COLUMBIA RIVER OPERATIONAL FORECAST SYSTEM AND THE SEMI-OPERATIONAL NOWCAST/FORECAST SKILL ASSESSMENT

Silver Spring, Maryland January 2025

Notional Oceanic and Atmospheric Administration

U.S. DEPARTMENT OF COMMERCE National Ocean Service Center for Operational Oceanographic Products and Services

Center for Operational Oceanographic Products and Services National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce

The National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) provides the National infrastructure, science, and technical expertise to collect and distribute observations and predictions of water levels and currents to ensure safe, efficient and environmentally sound maritime commerce. The Center provides the set of water level and tidal current products required to support NOS' Strategic Plan mission requirements, and to assist in providing operational oceanographic data/products required by NOAA's other Strategic Plan themes. For example, CO-OPS provides data and products required by the National Weather Service to meet its flood and tsunami warning responsibilities. The Center manages the National Water Level Observation Network (NWLON), a national network of Physical Oceanographic Real-Time Systems (PORTS®) in major U. S. harbors, and the National Current Observation Program consisting of current surveys in near shore and coastal areas utilizing bottom mounted platforms, subsurface buoys, horizontal sensors and quick response real time buoys. The Center: establishes standards for the collection and processing of water level and current data; collects and documents user requirements, which serve as the foundation for all resulting program activities; designs new and/or improved oceanographic observing systems; designs software to improve CO-OPS' data processing capabilities; maintains and operates oceanographic observing systems; performs operational data analysis/quality control; and produces/disseminates oceanographic products.

IMPLEMENTATION OF THE SALISH SEA AND COLUMBIA RIVER OPERATIONAL FORECAST SYSTEM AND THE SEMI-OPERATIONAL NOWCAST/FORECAST SKILL ASSESSMENT

Machuan Peng, Cristina Urizar and Aijun Zhang

National Ocean Service Center for Operational Oceanographic Products and Services Silver Spring, Maryland

Lei Shi and Philip H. Richardson

National Ocean Service Office of Coast Survey Silver Spring, Maryland

April 2025

U.S. DEPARTMENT OF COMMERCE Howard Lutnick, Secretary

National Oceanic and Atmospheric Administration Laura Grimm, Acting NOAA Administrator and Under Secretary of Commerce for Oceans and Atmosphere

National Ocean Service Nicole LeBoeuf, Assistant Administrator

Center for Operational Oceanographic Products and Services Marian Westley, Director

NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA. Use of information from this publication for publicity or advertising purposes concerning proprietary products or the tests of such products is not authorized.

TABLE OF CONTENTS

LIS	ST OF FIGURES ii
LIS	ST OF TABLES iv
EX	ECUTIVE SUMMARY iv
1.0	INTRODUCTION
2.0	MODEL NOWCAST/FORECAST CONFIGURATION4
2.	1 Meteorological Forcing Conditions
2.	2 River Forcing Conditions
2.	3 Open Boundary Conditions
2.	4 Initial Conditions
2.	5 Thermal vertical constraint on the open boundary
2.	.6 Bottom friction determination in the Columbia River
2.	7 Vertical datums in the Columbia River
2.	.8 Open boundary water level interval
3.0	NOWCAST/FORECAST MODEL SKILL ASSESSMENT
3.	1 Nowcast and Forecast Results
3.	2 Skill Assessment Software System and Data Source
	Skill assessment statistics
	Data sources
3.	3. Nowcast and Forecast Skill Assessment
	Results of water level skill assessment
	Results of surface water temperature skill assessment
	Results of surface water salinity skill assessment
	Results of water currents skill assessment
4.0	CONCLUSIONS
AC	KNOWLEDGEMENTS
RE	FERENCES
AC	RONYMS
LIS	ST OF APPENDICES
API	PENDIX A. WATER LEVEL MODEL SKILL ASSESSMENT TABLES1
API	PENDIX B. SURFACE WATER TEMPERATURE SKILL ASSESSMENT TABLES8
API	PENDIX D. SURFACE WATER SALINITY SKILL ASSESSMENT TABLES
API	PENDIX E. TIME SERIES OF MODELED SURFACE WATER SALINITY VERSUS
	OBSERVATIONS
API	PENDIX F. WATER CURRENTS SPEED SKILL ASSESSMENT TABLES
API	PENDIX G. WATER CURRENTS DIRECTION SKILL ASSESSMENT TABLES28

LIST OF FIGURES

Figure 1. The SSCOFS model domain
Figure 2. First section of river control file for the 18 rivers in the U.S
Figure 3. Second section of the river control file for the 18 rivers in the U.S
Figure 4. Reach ID of the rivers in the U.S7
Figure 5. The river control file for Canadian Frazer River7
Figure 6. Bottom roughness length scale distribution in the Columbia River
Figure 7. Columbia River Estuary Operational Forecast System (CREOFS) bottom drag coefficient distribution in the Columbia River
Figure 8. Columbia River water level stations and their river miles (from Jay 2011)10
Figure 9. The relative vertical positions of Experimental Geoid Models 2020b (xGEOID20b), model-0 and the Columbia River Datum (CRD) along Columbia River
Figure 10. Water level squiggles at Port Townsend and Garibaldi12
Figure 11. Ideal domains designed to investigate the water level squiggles
Figure 12. Examples of time series of water level, surface water temperature, and surface current speed and direction at selected stations
Figure 13. The water level observation stations used for the Salish Sea and Columbia River Operational Forecast System (SSCOFS) skill assessment
Figure 14. The water temperature observation stations used for the Salish Sea and Columbia River Operational Forecast System (SSCOFS) skill assessment
Figure 15. The salinity and currents observation stations used for the Salish Sea and Columbia River Operational Forecast System (SSCOFS) skill assessment. Red is for salinity, and blue for currents.
Figure 16. Nowcast root mean square errors (RMSEs) of water level (in meters) for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)20
Figure 17. Forecast root mean square errors (RMSEs) of water level (in meters) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)21
Figure 18. Nowcast root mean square errors (RMSEs) of water level (in meters) for the Columbia River Estuary Operational Forecast System (CREOFS)
Figure 19. Forecast root mean square errors (RMSEs) of water level (in meters) at different lead times for the Columbia River Estuary Operational Forecast System (CREOFS)
Figure 20. Nowcast root mean square errors (RMSEs) of surface water temperature (in °C) for Salish Sea and Columbia River Operational Forecast System (SSCOFS)
Figure 21. Forecast root mean square errors (RMSEs) of surface temperature (in °C) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)
Figure 22. Nowcast root mean square error (RMSE) of surface water salinity (in practical salinity units [PSU]) for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)26
Figure 23. Forecast root mean square error (RMSE) of surface water salinity (in practical salinity units [PSU]) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)
Figure 24. Nowcast root mean square error (RMSE) of current speed in m/s (left) and direction in degree (right) for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)
Figure 25. Forecast root mean square error (RMSE) of current speed in m/s (upper) and direction in degree (lower) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS)

Figure 26. The locations of the National Data Center Buoy (NDBC) buoy at Angeles Point and the	model
grid point 2 miles NNE of Angeles Point (PUG1639).	28
Figure 27. The relative location of the National Data Buoy Center (NDBC) buoy and its nearest node, 38739 (left). The selected element where modeled currents are extracted from nowcast	
fields files to compare with observations (right).	2
fields files to compare with observations (fight).	

LIST OF TABLES

Table 1. Skill assessment statistics (Hess et al. 2003).	15
Table 2. The water level observation stations used for skill assessment of the Salish Sea and River Operational Forecast System (SSCOFS).	
Table 3. The water temperature observation stations used for the Salish Sea and Colu Operational Forecast System (SSCOFS) skill assessment.	
Table 4. The water salinity and currents observation stations used for the Salish Sea and Colu Operational Forecast System (SSCOFS) skill assessment.	

EXECUTIVE SUMMARY

The Salish Sea and Columbia River Operational Forecast System (SSCOFS), with the Finite Volume Community Ocean Model (FVCOM) as its hydrodynamic core, has been developed and implemented into operations to provide users with 6-hour nowcasts (analyses of near present) and 72-hour forecast guidance of the 3-D physical conditions of Salish Sea and Columbia River estuary regions—including surface water levels, 3-D water currents, water temperature, and salinity.

The development and implementation of SSCOFS was the result of a collaborative project between Pacific Northwest National Laboratory (PNNL), the National Ocean Service's (NOS) Office of Coast Survey (OCS), Center for Operational Oceanographic Products and Services (CO-OPS), and National Weather Service's (NWS) National Centers for Environmental Prediction Central Operations (NCO). This is the first time that a Coastal and Ocean Modeling Testbed (COMT)-funded project was transitioned from research to operation.

The successful implementation of SSCOFS decommissioned NOS's prior Columbia River Estuary Operational Forecast System (CREOFS) whose hydrodynamic core was the Semi-Implicit Eulerian-Lagrangian Finite Element (SELFE) model, which is obsolete and no longer supported by its developers. SSCOFS's model domain is larger and fully envelops CREOFS's domain.

To the date of publication of this report, SSCOFS has been running robustly without any instability issues since February of 2024 when the last version of the model started running in quasi-operational mode. Skill assessment based on half-year (Feb-Aug, 2024) model outputs indicates that NOS's hydrodynamic model skill assessment standard criteria are met or close to met for all target variables, and the model's water level outperforms CREOFS's in the middle and upper Columbia River. The successful implementation of this model fulfills NOS's mission by providing more reliable forecast guidance on water levels, currents, water temperatures, and salinity to maritime communities to aid in services such as navigation management and emergency responses. It also serves as the hydrodynamic basis for other coastal applications, such as ecological modeling, fishery and climate studies in this region.

This technical report documents how CO-OPS built the conventional static control files for the High-Performance Computing (HPC) Coastal Ocean Modeling Framework (COMF) on Weather and Climate Operational Supercomputing System-2 (WCOSS2) to generate the required model forcing files to drive SSCOFS. This is followed by a list of some specific model treatments and, lastly, the presentation of nowcast and forecast guidance skill assessment results.

1.0 INTRODUCTION

The "Graveyard of the Pacific" is a very dangerous region for maritime navigation along the northwest coast of the United States. It stretches from around Tillamook Bay on the Oregon Coast northward past the treacherous Columbia Bar and the Strait of Juan de Fuca, up the rocky western coast of Vancouver Island to Cape Scott. Unpredictable weather conditions, including storms and fog, and dangerous coastal elements, including shifting sandbars, tidal rips, and rocky reefs and shorelines, have caused thousands of ships to wreck in the area since European exploration of the region began in earnest in the 18th century (Wikipedia contributors 2024).

To face this navigation challenge, the Columbia River Estuary Operational Forecast System (CREOFS) was implemented in 2012 as a result of a joint work of the National Ocean Service (NOS) and Oregon Health & Science University (OHSU). CREOFS, with a hydrodynamic core of Semi-Implicit Eulerian-Lagrangian Finite Element (SELFE), covered the "Graveyard of the Pacific" area. Unfortunately, SELFE is not supported any longer by its developer at OHSU. As a result, CREOFS has to be decommissioned, and a new Operational Forecast System (OFS), with a sustainable hydrodynamic core, should be implemented to replace it. As navigational safety is also a big concern in the adjacent Puget Sound, the San Juan Islands, the Strait of Georgia, and the Strait of Juan de Fuca, the new model should have a larger domain to include these areas.

The Salish Sea and Columbia River Operational Forecast System (SSCOFS) serves just such a purpose (Figure 1). This model was initially developed by Pacific Northwest National Laboratory (PNNL) in collaboration with the Northwest Association of Networked Ocean Observing Systems (NANOOS), an Integrated Ocean Observing System (IOOS) regional association. Recognizing the need to leverage the expertise of the external modeling community to support its modeling program, NOS has adopted a community modeling vision that relies on the contributions from more inclusive modeling communities. SSCOFS was first transitioned to the Office of Coast Survey (OCS) to perform a 1-year hindcast and evaluation to ensure that the model meets the minimum performance metrics for navigation as documented in the NOS Skill Assessment Technical Report (Hess et al. 2003).

Figure 1. The SSCOFS model domain.

After successful hindcast evaluation (Shi et al. 2025), SSCOFS was transitioned to the Center for Operational Oceanographic Products and Services (CO-OPS) to be integrated into the Coastal Ocean Modeling Framework (COMF) for model running in quasi-operational or Nowcast/Forecast (N/F) mode. The model's N/F skill assessment was then conducted to evaluate the model's performance in a quasi-operational environment to ensure the model runs robustly and reliably. Finally, the model code package was delivered to the National Centers for Environmental Prediction (NCEP) Central Operations (NCO) to be implemented on the Weather and Climate Operational Supercomputing System-2 (WCOSS2).

The SSCOFS model domain encompasses the Puget Sound, the San Juan Islands, the Strait of Georgia, and the Strait of Juan de Fuca, and extends south along the Pacific Coast to include the Columbia River estuary. The hydrodynamic core of SSCOFS is the Finite Volume Community Ocean Model (FVCOM), which is supported by the University of Massachusetts Dartmouth (UMASSD). The model has horizontal unstructured triangular mesh grids (Figure 1) with 239,734 nodes and 433,410 elements. The vertical grid follows the terrain and consists of 10 spatially varying sigma layers. The model's horizontal resolution ranges from 100 m along the shoreline to 500 m in deeper parts of Puget Sound and the Georgia Basin, and to 10,000 m over the continental shelf. Resolution in the Columbia River varies between 100 and 200 m. Water depth in the model references to xGEOID20b datum.

The output from NCEP's North American Mesoscale (NAM), with Global Forecast System (GFS) as its backup, provides meteorological forcing for the model. The primary river forcing is from National Water Model (NWM) output, with United States Geological Survey (USGS) observation and climatological daily river discharge data as its backup. Along the open boundaries,

tidal forcing is from the ADvanced CIRCulation (ADCIRC [ENPAC15]) tidal database, and the Global Real-Time Ocean Forecast System (G-RTOFS) provides the subtidal water levels and vertical profiles of water temperature and salinity.

The model codes were finalized on February 7, 2024, when the last NWM river-reach-ID related final revision was made, and the model has since been running reliably in near real-time mode with no instability issues. The model skill assessment, based on model results in a half-year period, indicates that all target variables, including water levels, surface water temperature, salinity, and currents, meet or are close to the NOS accepted error criteria. The water level outperforms the decommissioned CREOFS in the middle and upper Columbia River thanks to the establishment of a new USGS river discharge station and more accurate bottom friction distributions in the Columbia River. The model forecast horizon increases from 48 hours of CREOFS to 72 hours.

Section 2 documents how CO-OPS created the control and static files for the High-Performance Computing-Coastal Ocean Modeling Framework (HPC-COMF), which supports SSCOFS and other NOS forecast systems to generate the model forcing files that are required to drive the model. Some special non-conventional model treatments and features to improve the model performance are also listed in Section 2. A nowcast and forecast skill assessment for the period of February 15-August 15, 2024, is then presented in Section 3. Finally, conclusions are made in Section 4.

2.0 MODEL NOWCAST/FORECAST CONFIGURATION

This section describes the generation of (1) meteorological surface forcing conditions, (2) river forcing conditions, (3) lateral open boundary conditions, and (4) initial conditions for the SSCOFS nowcast/forecast predictions. All these forcing condition files are automatically generated by the HPC-COMF. Some non-conventional model features are also listed in this section.

2.1 Meteorological Forcing Conditions

Meteorological forcing conditions for SSCOFS are generated by the HPC-COMF, similar to other existing NOS operational forecast systems. The **sscofs.ctl** file in /**nosofs.vx.x.x/fix/sscofs/** controls which NOAA numerical weather prediction model (or models) is used. For SSCOFS, the model outputs of the NAM Forecast System with 12 km resolution is used by specifying the following 2 parameters in the **sscofs.ctl** control file:

export DBASE_MET_NOW=NAM export DBASE_MET_FOR=NAM

These control parameters indicate that the NAM product is used for both nowcast and forecast meteorological forcing conditions. NAM 4-km was initially planned to be used to drive the model. Its variable of "air pressure," however, has some issues in the northern area outside of United States territory. The initial plan, therefore, was abandoned.

The shell scripts **exnos_ofs_prep.sh** within **/nosofs.vx.x.x/scripts/** and **nos_ofs_create_forcing_met.sh** within **/nosofs.vx.x.x/ush/** are launched to generate **sscofs.tccz.yyyymmdd.met.nowcast.nc** and **sscofs.tccz.yyyymmdd.met.forecast.nc** (where yyyy, mm, dd, and cc in "tccz" indicate the year, month, day, and cycle of the nowcast/forecast,

respectively). The required NAM model output files exist in the WCOSS2 data tank. The GFS model output files will be used as backup if NAM is not available.

2.2 River Forcing Conditions

The 19 rivers considered in SSCOFS are the Columbia, Skagit, Stillaguamish, Snohomish, Willamette, Nooksack, Samish, Green, Nisqually, Puyallup, Skokomish, Deschutes, Chehalis, Elwha, Dungeness, Duckabush, Lewis, and Cowlitz Rivers in the U.S. and the Fraser River in Canada.

The NWS's NWM analyses and predictions are, by default, used for SSCOFS river forcing conditions for both the nowcast and forecast cycles. The NWM analyses are used for the nowcast cycles while the NWM predictions are used for the forecast cycles. Real-time river discharge observations at a USGS gauge are used as backup in the nowcast cycle when NWM predictions are not available for a river. This is true for the rivers in the U.S. The Fraser River is outside the U.S. territory. Therefore, it has no NWM output support. Fortunately, this river's real time observed discharge data are available in WCOSS2 data tank for nowcast cycles. For forecast, the river discharge persists with the value from the most recent observation.

To make the river data process more organized, the **nos_ofs_create_forcing_river** Fortran executable is called 2 times from **nos_ofs_create_forcing_river.sh**. One is for the 18 rivers in the U.S. and the other is for the Fraser River in Canada. The input files of the two calls are **sscofs.river.ctl** and **sscofs.river.canada.ctl**, respectively.

The first section of the **sscofs.river.ctl** shows the 18 rivers in the U.S. and their IDs.

Section 1: Information about USGS or NOS gages where real-time discharges and/or water temperature observations are available 36 18 1 !! NIJ NRIVERS DELT RiverID STATION ID NWS ID AGENCY_ID Q min Q max Q mean T min T max T mean Q Flag TS Flag River Name											
Rive:	rID STATION	_ID NWS	_ID AG	ENCY_ID (2_min Q_max	« Q_mean	T_min T_r	max T_mean	Q_Flag	TS_Flag	River_Name
1	14144700	XXXXX	USGS	304.0	35000.0	7500.0	1.00	23.20	12.09	1	1 "USGS 14144700 COLUMBIA RIVER AT VANCOVOR, OR"
2	12200500	XXXXX	USGS	86.0	5100.0	468.0	1.00	18.00	8.00	1	1 "USGS 12200500 SKAGIT RIVER NEAR MOUNT VERNON, WA"
3	12167000	XXXXX	USGS	5.21	705.09	59.05	1.00	18.00	8.0	1	1 "USGS 12167000 NF STILLAGUAMISH RIVER ARLINGTON, WA"
4	12150800	XXXXX	USGS	36.53	1713.17	288.98	1.00	18.00	8.0	1	1 "USGS 12150800 SNOHOMISH RIVER NEAR MONROE, WA"
5	14211720	XXXXX	USGS	183.21	3992.68	1157.71	1.00	18.00	8.0	1	1 "USGS 14211720 WILLAMETTE RIVER AT PORTLAND, OR"
6	12213100	XXXXX	USGS	13.20	1360.00	108.00	1.00	18.00	8.0	1	l "Nooksack River at Ferndale, WA"
7	12201500	XXXXX	USGS	0.62	142.00	6.90	1.00	18.00	8.0	1	1 "Samish River Near Burlington, WA"
8	12113000	XXXXX	USGS	2.30	800.00	37.00	1.00	18.00	8.0	1	1 "Green River Near Auburn, WA"
9	12089500	XXXXX	USGS	13.00	1120.00	41.00	1.00	18.00	8.0	1	1 "NISQUALLY RIVER AT MCKENNA, WA"
10	12101500	XXXXX	USGS	11.00	1600.00	93.80	1.00	18.00	8.0	1	l "Puyallup River at Puyallup, WA"
11	12061500	XXXXX	USGS	20.00	820.00	34.30	1.00	18.00	8.0	1	l "Skokomish River Near Potlatch, WA"
12	12080010	XXXXX	USGS	68.00	1990.00	164.90	1.00	18.00	8.0	1	1 "DESCHUTES RIVER AT E ST BRIDGE AT TUMWATER, WA"
13	12031000	XXXXX	USGS	12.00	1300.00	181.90	1.00	18.00	8.0	1	l "Chehalis River at Porter, WA"
14	12045500	XXXXX	USGS	0.28	1180.00	42.70	1.00	18.00	8.0	1	1 "ELWHA RIVER AT MCDONALD BR NEAR PORT ANGELES, WA"
15	12048000	XXXXX	USGS	0.20	300.00	20.00	1.00	18.00	8.0	1	1 "DUNGENESS RIVER NEAR SEQUIM, WA"
16	12054000	XXXXX	USGS	20.00	220.00	20.00	1.00	18.00	8.0	1	l "Duckabush River Near Brinnon, WA"
17	14220500	XXXXX	USGS	20.00	220.00	60.00	1.00	18.00	8.0	1	l "Lewis River at Ariel, WA"
18	14243000	XXXXX	USGS	50.00	1120.00	150.00	1.00	18.00	8.0	1	1 "Cowlitz River at Castle Rock, WA"

Figure 2. First section of river control file for the 18 rivers in the U.S.

The second section of the **sscofs.river.ctl** shows the node-ID of a river and the river's discharge scale (Q_Scale). All rivers in this model have 2 node points, and the Q_Scale is 0.5 at each point to split the entire river discharge.

Sectio	on 2: Info	ormati	on of F	VCOM g	rids/locat	ions to	specify	y river inputs	
GRID_I	D NODE_II	ELE_	ID DIR	FLAG	RiverID_Q	Q_Scal	le River	ID_T T_Scale	River_Basin_Name
1	239733	1	0	3	1	0.5	1	1.00	"Columbia R"
2	239734	2	0	3	1	0.5	1	1.00	"Columbia R"
3	170844	3	0	3	2	0.5	2	1.00	"Skagit R"
4	170845	4	0	3	2	0.5	2	1.00	"Skagit R"
5	178359	5	0	3	3	0.5	3	1.00	"Stillaguamish R "
6	178360	6	0	3	3	0.5	3	1.00	"Stillaguamish R"
7	219657	7	0	3	4	0.5	4	1.00	"Snohomish R"
8	219549	8	0	3	4	0.5	4	1.00	"Snohomish R"
9	237760	9	0	3	5	0.5	5	1.00	"Willamette R"
10	237747	10	0	3	5	0.5	5	1.00	"Willamette R"
11	177345	11	0	3	6	0.5	6	1.00	"Nooksack R"
12	177346	12	0	3	6	0.5	6	1.00	"Nooksack R"
13	150166	13	0	3	7	0.5	7	1.00	"Samish R"
14	150167	14	0	3	7	0.5	7	1.00	"Samish R"
15	196372	15	0	3	8	0.5	8	1.00	"Green R"
16	196210	16	0	3	8	0.5	8	1.00	"Green R"
17	220352	17	0	3	9	0.5	9	1.00	"Nisqually R"
18	220353	18	0	3	9	0.5	9	1.00	"Nisqually R"
19	211522	19	0	3	10	0.5	10	1.00	"Puyallup R"
20	211523	20	0	3	10	0.5	10	1.00	"Puyallup R"
21	212313	21	0	3	11	0.5	11	1.00	"Skokomish R"
22	212314	22	0	3	11	0.5	11	1.00	"Skokomish R"
23	230080	23	0	3	12	0.5	12	1.00	"Deschutes R"
24	230081	24	0	3	12	0.5	12	1.00	"Deschutes R"
25	51662	25	0	3	13	0.5	13	1.00	"Chehalis R"
26	51663	26	0	3	13	0.5	13	1.00	"Chehalis R"
27	47401	27	0	3	14	0.5	14	1.00	"Elwha R"
28	47402	28	0	3	14	0.5	14	1.00	"Elwha R"
29	72609	29	0	3	15	0.5	15	1.00	"Dungeness R"
30	72610	30	0	3	15	0.5	15	1.00	"Dungeness R"
31	188050	31	0	3	16	0.5	16	1.00	"Duckabush R"
32	188051	32	0	3	16	0.5	16	1.00	"Duckabush R"
33	223882	33	0	3	17	0.5	17	1.00	"Lewis R"
34	223883	34	0	3	17	0.5	17	1.00	"Lewis R"
35	202619	35	0	3	18	0.5	18	1.00	"Cowlitz R"
36	202726	36	0	3	18	0.5	18	1.00	"Cowlitz R"

Figure 3. Second section of the river control file for the 18 rivers in the U.S.

Based on the location of each river's node-ID, the corresponding river's reach ID in NWM products can be found on the NWM webpage <u>https://water.noaa.gov/map</u>. A river's reach ID layer needs to be activated by clicking on Layers-National Water Model-Stream Reach-Enabled. The corresponding river reach ID for the 18 rivers in the U.S. can be found in the following screenshot of the **sscofs.nwm.reach.dat** file.

REACH ID FLAG (1: IN NWM DOMAIN 0: OUTSIDE NWM DOMAIN) 18 23735707 1 24270288 1 24274329 1 24279014 1 23735689 1 23955772 1 24534280 1 23977616 1 24281964 1 23980375 1 24285492 1 23990859 1 23856601 1 23997022 1 23997334 1 24287052 1 24241627 1 24521980 1

Figure 4. Reach ID of the rivers in the U.S.

The screenshot of the river control file for the Fraser River of Canada can be found in Figure 5. The river's station ID, 08MF005, and its real-time observed discharge values are encoded in the **/lfs/h1/ops/prod/dcom/yyyymmdd/b001/xx022** BUFR file in the WCOSS2 data tank.

```
Section 1: Information about USGS or NOS gages where real-time discharges and/or water temperature observations are available

2 1 1 !! NIJ NRIVERS DELT

RiverID STATION_ID NWS_ID AGENCY_ID Q_min Q_max Q_mean T_min T_max T_mean Q_Flag TS_Flag River_Name

1 08MF005 XXXXX WSC 626.5 17000.0 3475.0 1.00 19.00 9.88 1 1 "WSC 08MF005 FRASER RIVER AT HOPE"

Section 2: Information of FVCOM grids/locations to specify river inputs

GRID_ID NODE_ID ELE_ID DIR FLAG RiverID_Q Q_Scale RiverID_T T_Scale River_Basin_Name

1 178006 1 0 3 1 0.5 1 1.00 "Fraser R"

2 178007 2 0 3 1 0.5 1 1.00 "Fraser R"
```

Figure 5. The river control file for Canadian Frazer River.

Real-time river discharge observations at a USGS river gauge are used as backup in the nowcast cycle for the 18 U.S. rivers when NWM predictions are not available for a river. In the forecast cycle, persistent river discharge and river water temperature will be used with the corresponding latest measured value. If neither NWM nor measured data is available, climatological river discharge and water temperature will be employed for this river.

2.3 **Open Boundary Conditions**

The purpose of **nos_ofs_create_forcing_obc_fvcom.f** of COMF is to generate lateral open boundary forcing files for FVCOM-based OFS, such as SSCOFS. Tides, generated from the ADCIRC (ENPAC15) tidal database, are provided by PNNL model developers. Nontidal water levels and vertical profiles of water temperature and salinity are all derived from G-RTOFS. Correspondingly, in the SSCOFS main control file, **sscofs.ctl**, all the following variables are set to "RTOFS":

export DBASE_WL_NOW=RTOFS export DBASE_WL_FOR=RTOFS export DBASE_TS_NOW=RTOFS

export DBASE_TS_FOR=RTOFS

The shell scripts **exnos_ofs_prep.sh** within **/nosofs.vx.x.x/scripts/** and **nos_ofs_create_forcing_obc.sh** within **/nosofs.vx.x.x/ush/** are launched to generate a modelrequired lateral open boundary condition (OBC) file **sscofs.tccz.yyyymmdd.obc.nc** (where yyyy, mm, dd, and cc in "tccz" indicate the year, month, day, and cycle, respectively). The required RTOFS model output files exist in the WCOSS2 data tank. NOS's West Coast Operational Forecast System (WCOFS) with higher resolution than RTOFS might be a better option for open boundary conditions. But it is not considered in this implementation due to lack of comparison and evaluation between RTOFS and WCOFS.

2.4 Initial Conditions

In COMF, **nos_ofs_read_restart_fvcom.f** is used to read the FVCOM-based OFS model initial/restart file. If the values and attributes of the variable "time" are correct, then the initial file is not changed. Otherwise, the following actions may be conducted if needed:

- Change the reference time (the attribute of "units" in the initial NetCDF file) of the variables "time" and "Itime" in the initial file if the reference time is different from \${BASE_DATE} specified in the control file, such as "nos.sscofs.ctl."
- (2) Recompute the values of the variables "time" and "Itime" using \${BASE_DATE} as the reference time in the initial file if (1) is conducted.
- (3) If the "time" is 48 hours less than \${time_nowcastend}, then the nowcast cycle is terminated. An initial condition file has to be constructed manually with 0 surface elevation, 0 velocity, and reasonable water temperature and salinity.

For additional information, see Zhang and Yang (2014).

In the case of the SSCOFS, the output restart file from the previous nowcast cycle is used to generate the initial condition for the nowcast of the current cycle. For example, sscofs.t03z.YYYYMMDD.rst.nowcast.nc from the nowcast at 03z will be renamed (after minor "time" and "Itime" related revision) to sscofs.t09z.YYYYMMDD.init.nowcast.nc for the 09z. The the cvcle nowcast at restart file from 09znowcast. sscofs.t09z.YYYYMMDD.rst.nowcast.nc will be used for the 09z cycle forecast, and so on.

The above 4 subsections are "conventional" model setups which are similar from one OFS to another. The following are special model setups and features that are configured for SSCOFS only, which can be called "non-conventional."

2.5 Thermal vertical constraint on the open boundary

G-RTOFS's water temperature at the lower water column was found to be lower than observation along the open boundary by PNNL model developers. During the hindcast test, PNNL found that a simple vertical thermal constraint can improve water temperature simulation by up to 1.5 °C. The constraint is that at any mesh grid point along the open boundary, the water temperature at any vertical water column below 125 m takes the temperature value at the 125 m depth. As the model's vertical layers are in sigma coordinates, a python code **nos_ofs_obc_cut.py** was developed to find the corresponding sigma layer to 125 m at each boundary mesh grid to carry out this thermal constraint. The python code can be found under /**nosofs.vx.x.x/ush/pysh**. Two sets of temperature results from 2 model versions—one with this thermal constraint and the other without—will be evaluated and compared in the next section.

2.6 Bottom friction determination in the Columbia River

Bottom friction, parameterized by bottom roughness length scale *zo*, is a very sensitive forcing term in hydrodynamic models to modulate not only the overall water level but also the tidal range for a tidal river. For the Columbia River, PNNL in the early phase of the model development suggested a *zo* distribution in the lower, middle, and upper Columbia River as shown in Figure 6. CO-OPS validated this *zo* distribution by comparing measured and modeled current profiles at different times and locations along the river. The measured currents are from a CO-OPS Columbia River currents survey completed in 2023 and from the USGS Columbia River station at Vancouver (14144700). During the *zo* validation period, the river discharge value at the NWM River Reach ID 23735707 agreed well with USGS measured data at 14144700.

Figure 6. Bottom roughness length scale distribution in the Columbia River.

Instead of providing 2-dimensional z_0 distribution in the model as in SSCOFS, then using the following formula to calculate the bottom drag coefficient C_d which is based on the ratio of the height of grid point nearest to the bottom z_{ab} to z_0 , the decommissioned CREOFS model directly provided 2-dimensional C_d from an input file.

$$C_{d} = max\{\left[\left(\frac{1}{\kappa}ln\left(\frac{z_{ab}}{z_{0}}\right)\right]^{-2}, 0.0025\} (k \text{ is von Karman's constant})\right]$$

CREOFS's C_d value distribution in a portion of the Columbia River is shown in Figure 7. The values are much smaller than the calculated C_d in SSCOFS. The more reasonable z_0 and the subsequent C_d in SSCOFS improves the model's water level performance in the middle and upper Columbia River, which will be discussed in detail in the next section.

Figure 7. Columbia River Estuary Operational Forecast System (CREOFS) bottom drag coefficient distribution in the Columbia River.

2.7 Vertical datums in the Columbia River

Vertical datums are important to any OFS, especially for SSCOFS. This is because, in addition to finding the relationships between tidal datums (such as mean lower low water [MLLW] and mean sea level [MSL]) and non-tidal datums (such as NAVD88 and xGEOID20b) at every mesh point, we also have to find their relationships to the special Columbia River Datum (CRD), which is critical for safe navigation along the river.

Figure 8. Columbia River water level stations and their river miles (from Jay 2011).

For navigation safety, the CRD was established as a non-tidal datum based on an observational study by the U.S. Army Corps of Engineers (USACE) in 1912. This datum is an adopted low water reference plane that runs from River Mile 23 to Bonneville Dam at River Mile 146. It also extends up the Willamette River (Figure 8). The CRD reference 0 was set at water level gauge locations such that the datum was below the average low water but not as low as the lowest record for a long period which resulted from a combination of circumstances that seldom occur. Historically, the CRD was originally defined relative to the National Geodetic Vertical Datum of 1929 (NGVD 29), later to North American Vertical Datum of 1988 (NAVD88), and more recently to Experimental Geoid Models 2020b (xGEOID20b) at distinct river miles with linear interpolation applied between defined locations.

Figure 9. The relative vertical positions of Experimental Geoid Models 2020b (xGEOID20b), model-0 and the Columbia River Datum (CRD) along Columbia River.

As xGEOID20b is a geoid vertical datum, which is theoretically parallel to the model-0 surface, the bathymetry referencing to this datum in the model, rather than non-geoid datum like NAVD88, reflects a more hydrodynamic reality of the domain. Figure 9 shows the relative positions of xGEOID20b and CRD along a portion of the Columbia River (from river mile 18 to 107), which is derived from the data available at <u>https://vdatum.noaa.gov/vdatumweb/</u>. The CRD relative to xGEOID20b at all model mesh nodes of the middle and upper river can be found in the standard OFS datum file **sscofs_vdatums.nc**, which is provided by OCS.

The dash line in the figure is the model-0 surface which is about 0.23 m below xGEOID20b. Model-0 surface is determined by matching the modeled water level with the observed CRD water level at Astoria, Skamokawa, Wauna, Longview, St. Helens, and Vancouver. The consistency of 0.23 m between xGEOID20b and model-0 surface at all stations indicates XGEOID20b parallels well to a geoid surface, model-0, in this section of the Columbia River.

As SSCOFS uses RTOFS's model output to provide the subtidal water level on the lateral open boundary, the model-0 surface should coincide with the long-term averaged water level along the boundary. Ideally, COMF should have been revised to add 0.23 m to process SSCOFS's OBC files so that model-0 and xGEOID20b coincide at the same level to secure bathymetry soundness. However, this value held true for less than 1 year, and a longer-term investigation should be made to verify that 0.23 m is valid for all seasons. After longer-term validation, a reasonable RTOFS

water level adjustment height should be imposed on the open boundary for SSCOFS in the next COMF package upgrade.

2.8 Open boundary water level interval

During the early phase of N/F model setup, pseudo-high-frequency water level oscillation, dubbed as water level "squiggle" in the SSCOFS project team, was found at many locations.

Figure 10. Water level squiggles at Port Townsend and Garibaldi.

Figure 10 shows water level squiggles at Port Townsend and Garibaldi. There were about 50 stations experiencing such squiggles in the total 300-plus stations in the model. Some squiggles, like at Port Townsend, were worse than the others, like at Garibaldi. In the worst case, the squiggle range could be as high as 0.2 m.

Identifying the root cause of the issue, COMF's conventional 1-hour water level interval in the OBC file, was time consuming. If we decrease the interval to 15 minutes, no squiggles were found in all stations. For safety, we set the water level interval in the model's OBC control file to six minutes in the latest COMF package to ensure no squiggles exist in the operational SSCOFS model results.

The team was motivated to investigate why a 1-hour water level input on open boundaries works well for other OFSs but not for SSCOFS. Six ideal domains with different shapes, coastal angles, and bathymetry distributions were constructed for the purpose of this investigation (Figure 11). Each domain can be considered as a test case with its eastern end having similar geographic features of the Salish Sea subregion and with its western end having similar geographic features of SSCOFS's open boundary subregion. These ideal cases were loaded into COMF to run 10 days in quasi-operational mode. The cycle-by-cycle meteorological and open boundary forcing files then were concatenated to run the model offline in a static directory, where different bathymetry slopes were tested for each case. Hundreds of offline tests indicate that water level squiggles exist for all 6 ideal cases as long as a relatively large bathymetry slope is applied along the western open boundary. The slope of 1/75 is big enough for all 6 ideal cases to get pseudo-squiggles somewhere in their domains. This slope is equivalent to the assumption that the bathymetry increases 1000 m from east to west across 1 longitude degree distance (the latitude at the Strait of Juan de Fuca is considered when the distance is calculated) near the open boundary of an ideal case. In reality, the largest bathymetry slope is around 1/30 to the west of the Strait of Juan de Fuca.

We found that the large bathymetry slope near the open boundary plays a major role in generating pseudo-water level squiggle. The tests also suggest that the shoreline shape of the

domain might be a minor contributor to the intensity of the squiggles. The lessons learned here will be useful for future OFS development.

Figure 11. Ideal domains designed to investigate the water level squiggles.

3.0 NOWCAST/FORECAST MODEL SKILL ASSESSMENT

The SSCOFS has performed robustly and produced reasonable predictions from its nowcast and forecast cycles for water level, temperature, salinity, and currents since the model's final version was fixed on February 7, 2024. This is visually validated by the cycle-by-cycle nowcast and forecast results compared with observations as shown in Figure 12. Standard model skill assessment metrics (Zhang et al. 2009), however, have to be conducted to provide more scientific and objective analysis of the model performance.

The initial planned skill assessment period was from mid-July 2023, when a false model "final" version was launched, to mid-July 2024. However, during the 2023-2024 winter season, the model's Columbia River discharge input was found unreasonable compared with USGS's measured value at Vancouver, WA 14144700. Due to seasonal man-controlled dam discharge modulation, the original river reach ID 23736129, which is located in the upper side of the Bonneville Dam, could not provide correct river discharges to the model. Communications with NWM development team determined that river reach ID 23735707 should be used to provide the discharge of Columbia River. The final river reach ID correction considerably changes the discharge and the subsequent water level and flow in the Columbia River. The model needs about 1 week to spin up to reach equilibrium in the river before the model skill assessment can be started.

In this report, the model skill assessment period is from February 15 to August 15, 2024, which satisfies the minimum time period (half-year) requirement for NOS standard model skill assessment. Section 3.1 describes the cycle-by-cycle nowcast and forecast results. Section 3.2 briefly reviews the basics of skill assessment statistics, followed by the results of the SSCOFS nowcast and forecast skill assessment in Section 3.3.

3.1 Nowcast and Forecast Results

The latest cycle's nowcast and forecast predictions are displayed on the SSCOFS website: <u>https://tidesandcurrents.noaa.gov/ofs/sscofs/sscofs.html</u>. Generally, the cycle-by-cycle results (Figures 12) indicate that the model meets NOS navigation requirements for water level, surface

currents, and water temperature in nowcast and forecast time windows at all stations where measurements are available. Permanent and consistent salinity observation is scanty in the whole model domain compared to other variables. Salinity cycle-by-cycle visual validation, therefore, is not available on the website. Periodic salinity measurement, however, did exist at 6 stations during the model skill assessment period, and the standard salinity skill assessment results at these stations will be illustrated in Section 3.3.

Figure 12. Examples of time series of water level, surface water temperature, and surface current speed and direction at selected stations.

3.2 Skill Assessment Software System and Data Source

This section provides an overview of the NOS model skill assessment statistics and software, and discusses the data sources used for the nowcast and forecast model skill assessment.

Skill assessment statistics

Skill assessment is an objective measurement of the performance of a model when systematically compared with observations. NOS skill assessment criteria were created for evaluating the performance of circulation models (Hess et al. 2003), and a software package was subsequently developed to compute these criteria using standard file format output from the models (Zhang et al. 2009). The software computes the skill assessment scores automatically using files containing observations and nowcast and forecast model results. A standard suite of skill assessment statistics is defined in Table 1.

Variable	Explanation
Error	The error is defined as the predicted value, p, minus the reference (observed or astronomical tide value, $r : e_i = p_i - r_i$.
SM	Series Mean. The mean value of a series y. Calculated as:
	$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i.$
RMSE	Root Mean Square Error. Calculated as:
	$RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N}e_i^2}.$
SD	Standard Deviation. Calculated as:
	$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (e_i - \bar{e})^2}$
CF(X)	Central Frequency. Fraction (percentage) of errors that lie within the limits $\pm X$.
POF(X)	Positive Outlier Frequency. Fraction (percentage) of errors that are greater than X.
NOF(X)	Negative Outlier Frequency. Fraction (percentage) of errors that are less than -X.
MDPO(X)	Maximum Duration of Positive Outliers. A positive outlier event is two or more consecutive occurrences of an error greater than X. MDPO is the length of time (based on the number of consecutive occurrences) of the longest event.
MDNO(X)	Maximum Duration of Negative Outliers. A negative outlier event is two or more consecutive occurrences of an error less than -X. MDNO is the length of time (based on the number of consecutive occurrences) of the longest event.

The target frequencies of the associated statistics based on navigation requirements are:

CF(X) ≥90%, POF(2X) ≤1%, NOF(2X) ≤1%, MDPO(2X) ≤ N, MDNO(2X) ≤ N

The NOS accepted error criteria (X) are 0.15 m for water level, $3.0 \,^{\circ}$ C for surface water temperature, $3.5 \,$ PSU for salinity, 0.26 m per second (m/s) for current speed, and 22.5 degrees for current direction. The accepted N (duration) is 24 hours.

Data sources

As shown in Tables 2-4 and Figures 13-15, the observed water level data are all from CO-OPS. The observed water temperature data are from CO-OPS, the NWS National Data Buoy Center (NDBC), and USGS. The observed water salinity and currents are from Coastal Margin Observation and Prediction (CMOP), the University of Washington (UW), NDBC, CO-OPS, and USGS. Real-time measurements of water level, surface temperature, salinity, and currents were compared with the model results, and model skill assessments were performed to evaluate the model skill statistics. Observed data at some stations were not available for certain periods. The missing data periods (in days) are indicated in the headers of the corresponding model skill assessment tables in Appendices A, B, D, F, and G.

Model output of 6-minute station files which support this technic report can be found at <u>https://noaa-nos-ofs-pds.s3.amazonaws.com/index.html#sscofs/netcdf/2024mm/</u> where mm is from 02 to 08.

Owner	Station ID	Lat	Lon	Station Name	Variables
CO-OPS	9449424	48.863	-122.759	Cherry Point	WL
CO-OPS	9444900	48.113	-122.758	Port Townsend	WL
CO-OPS	9447130	47.601	-122.340	Seattle	WL
CO-OPS	9446484	47.269	-122.415	Tacoma	WL
CO-OPS	9444090	48.125	-123.442	Port Angeles	WL
CO-OPS	9442396	47.908	-124.637	La Push	WL
CO-OPS	9437540	45.570	-123.956	Garibaldi	WL
CO-OPS	9435380	44.610	-124.086	South Beach	WL
CO-OPS	9439040	46.207	-123.768	Astoria	WL
CO-OPS	9440569	46.267	-123.452	Skamokawa	WL
CO-OPS	9439099	46.160	-123.405	Wauna	WL
CO-OPS	9440422	46.105	-122.953	Longview	WL
CO-OPS	9439201	45.865	-122.797	St. Helens	WL
CO-OPS	9440083	45.632	-122.697	Vancouver	WL

Table 2. The water level observation stations used for skill assessment of the Salish Sea and Columbia River

 Operational Forecast System (SSCOFS).

Figure 13. The water level observation stations used for the Salish Sea and Columbia River Operational Forecast System (SSCOFS) skill assessment.

Table 3. The water temperature observation stations used for the Salish Sea and Columbia River Operational ForecastSystem (SSCOFS) skill assessment.

Owner	Station ID	Lat	Lon	Station Name	Variables
CO-OPS	9449880	48.545	-123.012	Friday Harbor	SST
CO-OPS	9444900	48.108	-122.755	Port Townsend	SST
CO-OPS	9446484	47.267	-122.413	Tacoma	SST
CO-OPS	9444090	48.125	-123.440	Port Angeles	SST
CO-OPS	9443090	48.368	-124.605	Neah Bay	SST
CO-OPS	9442396	47.908	-124.637	La Push	SST
NDBC	46211	46.857	-124.244	Grays Harbor	SST
NDBC	46248	46.133	-124.667	Astoria Canyon	SST
CO-OPS	9437540	45.570	-123.956	Garibaldi	SST
CO-OPS	9440422	46.105	-122.953	Longview	SST
USGS	14211720	45.519	-122.667	Willamette Portland	SST

Figure 14. The water temperature observation stations used for the Salish Sea and Columbia River Operational Forecast System (SSCOFS) skill assessment.

Table 4. The water salinity and currents observation stations used for the Salish Sea and Columbia River OperationalForecast System (SSCOFS) skill assessment.

Owner	Station ID	Lat	Lon	Station Name	Variables
CMOP	saturn7	46.28581	-124.014999	Saturn-07	SSS
UW	npby1	47.28	-122.73	NPBY1	SSS
UW	npby2	47.7612	-122.3972	NPBY2	SSS
UW	orca3	47.9073	-122.627	ORCA3	SSS
UW	orca4	47.8034	-122.8029	ORCA4	SSS
UW	orca2	47.4218	-123.1126	ORCA2	SSS
NDBC	46267	48.173	-123.607	Angeles Point	CU
CO-OPS	ks0101	47.59406	-122.5423	Rich Passage	CU
CO-OPS	ks0201	47.75788	-122.7303	Bangor Hood	CU
				Canal	
USGS	14144700	45.63117	-122.69580	USGS-Van	CU

Figure 15. The salinity and currents observation stations used for the Salish Sea and Columbia River Operational Forecast System (SSCOFS) skill assessment. Red is for salinity, and blue for currents.

3.3. Nowcast and Forecast Skill Assessment

The SSCOFS semi-operational nowcast and forecast assessment period was from February 15-August 15, 2024, and the results from model simulations during this period were concatenated into time series for analysis using the skill assessment software. The observed original salinity data from UW and river flow data from USGS were manually processed by python and shell scripts to change to the required standard format.

Generally, root mean square error (RMSE), central frequency (CF), negative outlier frequency (NOF), positive outlier frequency (POF), maximum duration of negative outliers (MDNO), and maximum duration of positive outliers (MDPO) at each station meet or are close to the NOS accepted error criteria for most variables in both nowcast and forecast scenarios. The results of the skill assessment for water level, temperature, salinity, and currents are discussed in the following subsections.

Results of water level skill assessment

Among CO-OPS's 14 National Water Level Observation Network (NWLON) stations, model water levels generally agree well with observations. A typical cycle of N/F results is shown in Figure 12.

Figure 16. Nowcast root mean square errors (RMSEs) of water level (in meters) for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

The RMSEs of nowcast water levels at most stations are less than or close to 0.15 m, the accepted error criteria for navigation applications (Figure 16). More skill assessment details can be found in Appendix A Tables A-1 to A-14. The only exception is at Garibaldi (station ID 9437540) where the RMSE is about 0.21 m. This is because the model mesh can't resolve the complicated coastline where station 9437540 is located. The node point where the modeled water levels are compared with observations is about 200 m from the observation location. More importantly, 2 man-made piers, one of which accommodates 9437540, are not resolved in the model grid.

Figure 17. Forecast root mean square errors (RMSEs) of water level (in meters) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

The RMSEs of forecast water levels at all stations are also less than or close to the NOS accepted error criteria. For any numerical model, the RMSEs of its target variables generally increase as the model's forecast lead time goes up. This is the same for SSCOFS water levels. However, in the middle and upper Columbia River, this trend is extremely striking as shown in Figure 17. For example, the RMSE at Vancouver increases dramatically from 0.11 m at 0 H to 0.24 m at 72 H lead time scenario (see Table A-14 for the values). This rapid RMSE increase with forecast lead time might be attributed to the inaccuracy of NWM's river discharge in the forecast as data assimilation effect tapers off. Such dramatic degradation of water level performance in forecast cycles has never been found in the other existing OFS skill assessments.

The SSCOFS's water level outperforms the decommissioned CREOFS's in the middle and upper Columbia River in nowcast and short forecast lead time scenarios, which is demonstrated by the comparison of Figures 18 and 19 with the same 6 Columbia River stations in Figures 16 and 17. The nowcast water level RMSEs from CREOFS operational runs at Longview, St. Helens, and Vancouver are all above 0.15 m, much worse than those of SSCOFS. In forecast, the CREOFS's RMSEs also increase with forecast lead time but far less intensely than in SSCOFS.

Two factors might be the players behind better water level performance of SSCOFS than CREOFS. One is the correct river reach ID 23735707 is used in the model to obtain NWM's data-assimilation-considered river discharge near USGS 14144700 station, which started to measure

and disseminate river discharge in 2016, 6 years after CREOFS was implemented. The second factor is more accurate bottom friction distribution is considered as mentioned previously.

Figure 18. Nowcast root mean square errors (RMSEs) of water level (in meters) for the Columbia River Estuary Operational Forecast System (CREOFS).

Figure 19. Forecast root mean square errors (RMSEs) of water level (in meters) at different lead times for the Columbia River Estuary Operational Forecast System (CREOFS).

The tables in Appendix A show a full set of water level model skill assessment results for all skill statistical metrics at all stations. Generally, nowcast and forecast CF values at all locations range from 50.1% to 89.8% which does not meet the accepted criteria (CF \geq 90%). The lowest CF is found at Garibaldi, where the model can't resolve the subarea well, as mentioned before. The unsatisfying low CF is due to the high energy of tide and river flow in the model domain and the subsequent relatively large water level RMSEs, as shown previously.

NOF and POF are close to or less than 1% (the NOS accepted error criteria) at most stations for both nowcast and forecast scenarios. But at Garibaldi, the nowcast water level NOF and POF are as high as 10.4% and 4.9%, respectively, due to the large water level RMSE. For the forecast, the worst cases are in the middle and upper Columbia River when lead time goes up. In the Vancouver H72 scenario, for instance, the forecast water level NOF and POF are 9.5% and 11.0%,

respectively, which are associated with the large water level RMSEs in the long lead times, as mentioned before.

Both MDNO and MDPO at all ocean and lower Columbia River stations are much less than the accepted 24-hour criteria for all scenarios. From Longview to the upper Columbia River, both MDNO and MDPO increase. One interesting thing is that the MDNO is longer than MDPO in those upper river stations. MDNO at Longview is 13.3 hours for nowcast and 66.0 hours for H72 forecast lead time, while MDPO for all scenarios except for H72 forecast is 0.0 hours. At Vancouver, nowcast MDNO and MDPO are 21.6 and 0.0 hours, respectively. But as forecast lead time increases, MDPO nonlinearly increases. For the forecast H72 scenario, the MDPO has increased to as high as 90 hours, though still less than its MDNO value.

The correlation coefficient (CORR) of water levels for all open ocean stations is very high, either 0.99 or 1.0. This indicates that modeled water level over the analysis period is well in phase with observations, largely due to the accuracy of modeled tidal phases in most subregions where the tide is very strong. Even for those middle and upper Columbia River stations where the tidal range is small, the CORR is still above 0.97 for nowcast scenarios. As river influence becomes more important compared with the tide, the CORR decreases as the lead time increases in the upper Columbia River due to worse river discharge input, as mentioned previously. For example, at Vancouver, the CORR is 0.94 in the H06 scenario and decreases to 0.78 in the H72 scenario.

Results of surface water temperature skill assessment

Model evaluation and skill assessment for surface water temperature were conducted at 11 stations. Their locations can be found in Table 3 and Figure 14. Eight are CO-OPS's NWLON stations, 2 are NDBC buoys, and 1 is a USGS station. The water temperature sensor depth ranges from 0.5 to 2.8 m of the 11 stations, and the model temperature output at corresponding grid points has been interpolated to the corresponding sensor depth. Similar vertical interpolation holds true in both salinity and currents model data processes that will be discussed in the next subsections.

Nowcast RMSEs of surface water temperature are illustrated in Figure 20, and forecast RMSEs at different lead times are shown in Figure 21. By comparison, the model's skill in predicting water temperature is relatively better than the water level skill described previously. The RMSEs of all stations are far less than 3.0°C, the NOS accepted error criteria. Two stations have interesting RMSE slopes as forecast lead time increases. One is Willamette Portland, where RMSEs increase sharply with lead time. This is similar to the water level RMSE slope in the middle and upper Columbia River, due largely to the NWM river discharge forecast inaccuracy, as mentioned previously. More interesting is station La Push where the RMSEs of water temperature decrease as forecast lead time increases, a "negative" distribution which is quite uncommon. There are 2 major factors in the model to determine water temperature. One is the temperature profile derived from RTOFS in the lateral open boundary, and the other is the local heat flux in NAM. The latter is more likely the culprit. This is because water temperature is conservative and stable along the lateral open boundary where water depth is so deep. The huge change of nearly 0.5°C RMSE from the 0-hour to 72-hour scenario can only come from NAM. Apparently, local heat flux measurement/calculation and land-sea boundary determinations in the data assimilation process in NAM may have some issues in the nowcast cycle which leads to the bad-nowcast and goodforecast phenomenon.

Figure 20. Nowcast root mean square errors (RMSEs) of surface water temperature (in °C) for Salish Sea and Columbia River Operational Forecast System (SSCOFS).

Figure 21. Forecast root mean square errors (RMSEs) of surface temperature (in °C) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

Further details of model skill assessment results at all stations can be found in the tables in Appendix B. As shown in the tables, CF meets the accepted 90% criterion at all stations for nowcast scenarios except for La Push, which has a value of 84.5%. CF in forecast scenarios at all stations also have very high values. Both NOF and POF meet the 1% criterion at all stations for nowcast and forecast scenarios. Actually, they are all perfectly 0.0% except for La Push, where

NOF is 0.5% in some forecast lead times (H60, H66, and H72). The values of MDPO and MDNO are perfectly 0.0 hour at all stations (including La Push) and for all nowcast and forecast scenarios.

The surface water temperature time series comparison between model and observation at all stations are illustrated in Appendix C. The observations are not complete within the entire evaluation window at some stations.

As mentioned in Section 2.4, SSCOFS has an arbitrary thermal vertical constraint on the lateral open boundary, such that, "at any mesh grid point on the boundary, the water temperature at any vertical water column below 125 m takes the temperature value at the 125 m level." To evaluate its effect, the model without this thermal constraint was also quasi-operationally running during the skill assessment period. This no-thermal-constraint model skill assessment indicates that there is slightly worse temperature performance compared with thermal-constraint model. Generally, no noticeable RMSE change is found on the Pacific coast of Oregon and Washington. RMSEs are about 0.2°C higher at the stations in the Salish Sea subregion. The worst station is Neah Bay, which has about 0.5°C RMSE increase. During the model skill assessment period, the vertical thermal constraint did not bring a 1.5°C improvement as PNNL found in their hindcast study.

Results of surface water salinity skill assessment

Model evaluation and skill assessment for surface water salinity were conducted at 6 buoy stations. Their locations can be found in Table 4 and Figure 15. One station is maintained by CMOP, and the others are owned and maintained by UW. The salinity measurement depth is 1.0 m at Saturn-07 and 5.0 m at all other stations.

Nowcast RMSEs of surface water salinity are illustrated in Figure 22, and forecast RMSEs at different lead times are shown in Figure 23. The salinity model performance, similar to water temperature, is acceptable at all stations. The RMSEs of all stations are less than 3.5 practical salinity units (PSU), the NOS accepted error criterion. The RMSEs at NPBY1 and NPBY2 are outstanding at less than 0.5 PSU. CF ranges from 80.0% at Saturn-07 to 100.0% at NPBY1 and NPBY2.

Appendices D and E, respectively, show the details of salinity skill assessment results at each station and the modeled versus observation time series graphics at each station. The model's salinity depends largely on the lateral open boundary salinity profile derived from RTOFS, as well as on the river discharges if the place of interest is in the vicinity of a river mouth. For example, given its location, the model's salinity performance at Saturn-07 depends on both the open boundary salinity and the fresh water discharge of Columbia River. Table D-1 indicates that POF is 0.0% and MDPO is 0.0 hours for nowcast and all forecast scenarios. NOF and MDNO are 3.7% and 24 hours in the worst scenario, which indicates the model has moderate low salinity intendancy that likely stems from slightly high discharge estimation from NWM. This result can be confirmed by Figure E-1 which illustrates that during the skill assessment period, the modeled salinity is less than observation. For example, the observed salinity is more than 5.0 PSU larger than the modeled salinity around July 18, 2024.

As observed salinity data are from different sources and their data temporal resolution ranges from 2 minutes at Saturn-07 to 1 day at some Oceanic Remote Chemical Analyzer (ORCA) stations, the observed data is marked as a black "dot" in all Appendix E figures for better visual evaluations.

Figure 22. Nowcast root mean square error (RMSE) of surface water salinity (in practical salinity units [PSU]) for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

Figure 23. Forecast root mean square error (RMSE) of surface water salinity (in practical salinity units [PSU]) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

Results of water currents skill assessment

As shown in Table 4 and Figure 15, there are 4 currents observation stations used for the skill assessment, 2 of which are from CO-OPS, 1 from NDBC, and 1 from USGS. A typical cycle of N/F results of current speed and direction can be found in Figure 12. In most cases, both modeled current speed and direction match well with the observations.

Figure 24. Nowcast root mean square error (RMSE) of current speed in m/s (left) and direction in degree (right) for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

Figure 25. Forecast root mean square error (RMSE) of current speed in m/s (upper) and direction in degree (lower) at different lead times for the Salish Sea and Columbia River Operational Forecast System (SSCOFS).

The sensor depths at Angeles Point, Rich Passage, and Bangor Hood Canal are 1.0 m, 13.7 m, and 56.0 m, respectively, below sea surface. USGS-Van provides measured vertically averaged river flow rather than flow at a certain depth. The river flow vertical profile is the assumed liner from surface to bottom at this station, so the mid-layer currents at the corresponding model output station are used to compare with the observations. The main purpose of model assessment at USGS-Van is to evaluate the validity of SSCOFS's modeled river flow, which coherently reflects the soundness of NWM's Columbia River discharge. Furthermore, the accuracy of the modeled river flow is a critical basis to find and validate the correct bottom friction distributions as discussed in Section 2.6.

The RMSEs of current speeds for nowcast and forecast can be found in the left panel of Figure 24 and upper panel of Figure 25. All stations meet the NOS accepted error criteria except for Angeles Point, where the RMSE of current speed is about 0.48 m/s, much higher than 0.26 m/s,

the NOS accepted error criteria. Similar results can be found for the RMSEs of current directions from the right panel of Figure 24 and lower panel of Figure 25. At the other 3 stations, RMSEs meet the NOS required 22.5°, but the directions at Angeles Point are larger than 50.0° for the nowcast and all forecast lead time scenarios. The details of the current skill assessment results at all stations can be found in the tables in Appendices F and G.

The reason behind poor current performance at Angeles Point is the location difference between the observation and model outputs. The model mesh point, which is nearest to NDBC Angeles Point, is not listed in the model's output control file. Instead, the mesh grid which is closest to Angeles Pt., 2 mi. NNE of (PUG1639) is mistakenly listed in the control file to represent NDBC at Angeles Point. The distance is about 5.9 km between the 2 locations, as shown in Figure 26.

Figure 26. The locations of the National Data Center Buoy (NDBC) buoy at Angeles Point and the model grid point 2 miles NNE of Angeles Point (PUG1639).

If the Strait of Juan de Fuca had parallel north and south shores and had the same water depth of 50 m everywhere in the channel, for example, the 5.9 km location difference should not have made a considerable RMSE difference. This is because the only difference, hydrodynamically, between the 2 locations in the ideal case should come from the tidal phase, which is about 4 minutes given the assumed water depth and the resulting gravity wave speed. In reality, however, the water depth at Angeles Pt., 2 mi. NNE of (PUG1639) is 25 m, much shallower than the 75 m of NDBC at Angeles Point. As a result, the water currents at the former location, modulated by the continuity equation in the model, should be larger than at the latter. In addition, the coastline is meandering as shown in Figure 26, which makes the major current direction different at the 2 locations.

In light of the above analysis, model currents from the element which is nearest to the NDBC at Angeles Point were extracted from hourly nowcast fields files to reassess the model performance. Node point 38739 is found to be the nearest to the NDBC buoy station. Based on the locations of this node and the NDBC buoy, shown in the left panel of Figure 27, and the relative locations of the node's surrounding elements, as shown in the right panel of Figure 27, the element 72139 is selected to extract the model surface currents to compare with the observations.

Figure 27. The relative location of the National Data Buoy Center (NDBC) buoy and its nearest model node, 38739 (left). The selected element where modeled currents are extracted from nowcast hourly fields files to compare with observations (right).

The RMSE of nowcast surface current speed decreases to 0.33 m/s, which is much lower than the original 0.48 m/s though still over the NOS accepted error criteria. Similarly, the RMSE of current direction decreases to 37.6° from the original 50.7° due largely to a more accurate current direction at the correct model output location.

No historical forecast field files were archived in the skill assessment period to support forecast skill reassessment at the new correct model location. Even for the nowcast, the hourly modeled currents are too temporally coarse to be employed to conduct standard model skill assessment. The above model reassessments on current speed and direction at the correct location are not the official results and only serve as reference.

4.0 CONCLUSIONS

The SSCOFS, with the FVCOM as its hydrodynamic core, has been implemented to provide users with nowcast and forecast guidance of the 3-D physical conditions of the Salish Sea and Columbia River estuary regions—including surface water levels, 3-D water currents, water temperature, and salinity—out to 72 hours. The quasi-operational run of the SSCOFS with its final version began on February 7, 2024, and their outputs for the period of February 15-August 15, 2024, were used for the model nowcast and forecast skill assessment.

The model skill assessment results indicate that all water level metrics pass or are close to the NOS accepted error criteria. For example, RMSEs of water level at all stations are less than or close to 0.15 m, the acceptance for navigation applications, except for Garibaldi, where the model mesh grids can't resolve the complicated coastline. CFs range from 50.1% to 89.8% which does not meet the accepted criteria (CF \geq 90%) due largely to high vitality of tides and Columbia River flow in the model domain. NOF and POF are close to or less than 1% (the NOS accepted error criteria) at most stations for both nowcast and forecast scenarios. Both MDNO and MDPO at all ocean and lower Columbia River stations are much less than the required 24-hour criteria for both scenarios.

The SSCOFS nowcast water level outperforms the decommissioned CREOFS in the middle and upper Columbia River thanks to the establishment of a new USGS river discharge station and more accurate bottom friction distributions in the Columbia River. However, the SSCOFS's water level RMSEs in the middle and upper Columbia River increase linearly with forecast lead times, which suggests NWM's river discharge forecast performance decreases as lead time increases.

Another advantage of SSCOFS, not mentioned in Section 3, is that unlike CREOFS, it does not need any water level adjustment based on the difference between the model and observation

of previous cycles to predict water level of the current cycle, thanks largely to the new establishment of a USGS river discharge station.

The surface water temperature skill assessment results indicate that water temperature RMSEs are far less than 3°C at all available stations. CFs meet the accepted 90% criterion at almost all stations for nowcast scenarios. Both NOF and POF meet the 1% criterion at all stations for nowcast and forecast scenarios. The value of MDPO and MDNO is perfectly 0.0 hours at all stations for all nowcast and forecast scenarios.

The special vertical thermal constraint did not have substantial model enhancement on water temperature performance during the skill assessment period. Generally, there is no noticeable water temperature enhancement on the Pacific coast of Oregon and Washington. There is, however, tangible water temperature improvement, attributed to the thermal constraint, in the Salish Sea subregions and the Strait of Juan De Fuca, with the largest improvement at Neah Bay where a 0.5° C RMSE enhancement is found.

The surface water salinity skill assessment results indicate that salinity RMSEs at all stations are less than 3.5 PSU, the NOS accepted error criteria. The RMSEs at NPBY1 and NPBY2, located in the Salish Sea, are outstanding at less than 0.5 PSU. The model's salinity performance depends largely on the open boundary salinity profile derived from RTOFS and also on river discharges if the place of interest is in the vicinity of a river mouth. Given its location, the model's salinity performance at Saturn-07 depends on both the open boundary salinity and the fresh water discharge of Columbia River. NOF and MDNO values indicate the model has moderate low salinity intendancy that likely stems from slightly high river discharge estimation from NWM.

The RMSEs of current speed for nowcast and forecast meet NOS accepted error criteria at all stations except for Angeles Point, where the RMSE of current speed is about 0.48 m/s, which is over the NOS accepted error criterion. Similar results are found for the RMSEs of current direction. At the other 3 stations, RMSEs are less than the accepted error criterion. But the values at Angeles Point are larger than 50.0° for the nowcast and all forecast scenarios. The reason behind such poor current performance at this station is due to an incorrect model output location. Model currents from the correct mesh element were extracted from hourly nowcast fields files to reassess the model performance. Both RMSEs of current speed and direction are improved substantially at this station.

ACKNOWLEDGEMENTS

The development and implementation of SSCOFS is a joint effort of PNNL, OCS, CO-OPS, and NWS/NCEP/NCO.

Thanks to Tarang Khangaonkar and Wenfei Ni, of PNNL, and Adi Nugraha, of the University of Washington at Tacoma, for contributing to the transition of the models from research to operations.

For CO-OPS, thanks to Carolyn Lindley and Paul Bradley for their general management of and guidance on the project; thanks to the whole modeling team for their technical suggestions and support in the nowcast/forecast model development phase; special thanks to John Cassidy, Nicholas Allhoff, and Rita Adak for their respective support of web page development, Linux server support, and THREDDS server support; and special thanks to Nicole Kruz, Alexis Sluder, and Amy Bosteels for outreach support on the models.

Thanks to Xiaoxue Wang, Jianbin Yang and Steven Earle, of NCEP/NCO, for their support on the final implementation of the models on WCOSS2.

Thanks to the FVCOM development team, Professor Changesheng Chen and Dr. Jianhua Qi, of the University of Massachusetts-Dartmouth (UMASSD), for their support.

The NOS Modeling and Prediction Team and NOS Model Planning and Execution Board provided guidance and support throughout the project.

Thanks to Ilya Rivin of CO-OPS and Zizang Yang of OCS for scientific review of this report.

REFERENCES

- Hess K, Gross T, Schmalz R, Kelley J, Aikman F, Wei E, Vincent M. 2003. NOS standards for evaluating operational nowcast and forecast hydrodynamic model systems. US Dept Commer NOAA NOS CS Technical Report 17. 56 p. Accessible at: <u>https://repository.library.noaa.gov/view/noaa/2460</u>
- Jay D, Leffler K, Degens S. 2011. Long-term evolution of Columbia River tides. J Waterw Port Coast Ocean Eng. 137(4). DOI:10.1061/(ASCE)WW.1943-5460.0000082
- Shi L, Peng M, Urizar C, Richardson P, Zhang A. Forthcoming. Salish Sea and Columbia River Estuary Operational Forecast System (SSCOFS): model evaluation and hindcast skill assessment. US Dept Commerce NOAA NOS CS (in preparation) Technical Report.
- Wikipedia contributors. 2024. Graveyard of the Pacific. Wikipedia: The Free Encyclopedia. Web. Accessed 24 Jun 2024 (<u>https://en.wikipedia.org/wiki/Graveyard_of_the_Pacific</u>)
- Zhang A, Hess K, Wei E, Myers E. 2009. Implementation of model skill assessment software for water level and current in tidal regions. US Dept Commer NOAA NOS CS Technical Report 24. 71 p. Accessible at: <u>https://repository.library.noaa.gov/view/noaa/2204</u>
- Zhang A and Yang Z. 2014. Coastal ocean modeling framework on NOAA's high performance computer (COMF-HPC). US Dept Commer NOAA NOS CO-OPS Technical Report 069. 87 p. Accessible at: <u>https://repository.library.noaa.gov/view/noaa/14421</u>

ACRONYMS

nenon	
ADCIRC	ADvanced CIRCulation
CF	central frequency
CMOP	Coastal Margin Observation and Prediction
COMF	Coastal Ocean Modeling Framework
CO-OPS	Center for Operational Oceanographic Products and Services
CRD	Columbia River Datum
CREOFS	Columbia River Estuary Operational Forecast System
FVCOM	Finite Volume Community Ocean Model
GFS	Global Forecast System
HPC	High Performance Computing
IOOS	Integrated Ocean Observing System
MDPO	maximum duration of positive outliers
MDNO	maximum duration of negative outliers
NAM	North American Mesoscale Forecast System
NANOOS	Northwest Association of Networked Ocean Observing Systems
NCEP	National Centers for Environmental Prediction
NDBC	National Data Buoy Center
N/F	Nowcast/Forecast
NOAA	National Oceanic and Atmospheric Administration
NOF	negative outlier frequency
NOS	National Ocean Service
NWM	National Water Model
NWLON	National Water Level Observation Network
NWS	National Weather Service
NPAC	North Pacific
OCS	Office of Coast Survey
OHSU	Oregon Health & Science University
PNNL	Pacific Northwest National Laboratory
POF	positive outlier frequency
RMSE	root mean square error
RTOFS	Real-Time Ocean Forecast System
SELFE	Semi-implicit Eulerian-Lagrangian Finite Element
SM	series mean
SSCOFS	Salish Sea and Columbia River Operational Forecast System
UMASSD	University of Massachusetts Dartmouth
USGS	U.S. Geological Survey
UW	University of Washington
WCOSS	Weather and Climate Operational Supercomputing System

LIST OF APPENDICES

- Appendix A. Water Level Model Skill Assessment Tables
- Appendix B. Surface Water Temperature Model Skill Assessment Tables
- Appendix C. Time Series of Modeled Surface Water Temperature Versus Observations
- Appendix D. Surface Water Salinity Skill Assessment Tables
- Appendix E. Time Series of Modeled Surface Water Salinity Versus Observations
- Appendix F. Water Currents Speed Skill Assessment Tables
- Appendix G. Water Currents Direction Skill Assessment Tables

APPENDIX A. WATER LEVEL MODEL SKILL ASSESSMENT TABLES

Station:				Cherry	/ Point									
Observed dat	ta time p	period f	² rom 2/15	/2024 to	/ 8/15/2	024								
Data gap is	filled u	using S\	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	-0.129										
h			40201	-0.129										
H-h	15 cm	24h	40201	-0.001	0.144	0.144	1.1	70.2	2.2	6.3	7.4	0.0	0.99	0.99
SCE	VARIO: SE	MI-OPEF	ATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.001	0.145	0.145	1.5	71.1	2.3	0.0	0.0	-99.9	1.0	
H006-h006	15 cm	24h	611	0.000	0.144	0.144	1.3	70.9	2.1	0.0	0.0	-99.9	1.0	
H012-h012	15 cm	24h	610	-0.001	0.145	0.145	1.5	70.7	2.1	0.0	0.0	-99.9	1.0	
H018-h018	15 cm	24h	609	-0.001	0.144	0.144	1.1	71.1	2.1	0.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	-0.001	0.144	0.144	1.3	71.4	2.3	6.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	-0.001	0.144	0.144	1.2	70.7	2.5	0.0	6.0	-99.9	1.0	
H036-h036	15 cm	24h	606	-0.001	0.144	0.144	1.2	71.0	2.3	0.0	6.0	-99.9	1.0	
H042-h042	15 cm	24h	605	-0.003	0.145	0.145	1.3	71.2	2.3	0.0	6.0	-99.9	1.0	
H048-h048	15 cm	24h	604	-0.003	0.145	0.145	1.3	71.7	2.3	0.0	6.0	-99.9	1.0	
H054-h054	15 cm	24h	603	-0.003	0.146	0.146	1.2	70.6	2.2	0.0	6.0	-99.9	1.0	
H060-h060	15 cm	24h	602	-0.003	0.146	0.146	1.2	71.6	2.2	0.0	6.0	-99.9	1.0	
H066-h066	15 cm	24h	601	-0.004	0.148	0.148	1.3	71.0	2.8	0.0	6.0	-99.9	1.0	
H072-h072	15 cm	24h	600	-0.004	0.148	0.148	1.7	70.5	2.5	6.0	6.0	-99.9	1.0	

 Table A-1. Water level skill assessment at Cherry Point.

 Table A-2. Water level skill assessment at Port Townsend.

Chatiana				Daut T				1						
Station:					ownsend									
Observed dat				-	/ 8/15/20	024								
Data gap is		0	/D method											
Data are no	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<>	<.5%	CONN	JKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.012										
h			40201	0.012										
H-h	15 cm	24h	40201	0.000	0.138	0.138	0.7	72.6	2.1	5.1	7.1	0.0	0.99	0.99
SCE	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.002	0.140	0.140	0.5	71.7	2.5	0.0	0.0	-99.9	1.0	
H006-h006	15 cm	24h	611	0.002	0.140	0.140	0.5	70.9	2.3	0.0	0.0	-99.9	1.0	
H012-h012	15 cm	24h	610	0.002	0.139	0.140	0.5	71.6	2.3	0.0	0.0	-99.9	1.0	
H018-h018	15 cm	24h	609	0.002	0.139	0.140	0.2	71.1	2.5	0.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	0.001	0.139	0.140	0.3	71.1	2.1	0.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	0.001	0.139	0.140	0.3	72.2	2.3	0.0	0.0	-99.9	1.0	
H036-h036	15 cm	24h	606	0.001	0.139	0.140	0.2	71.1	2.5	0.0	0.0	-99.9	1.0	
H042-h042	15 cm	24h	605	0.000	0.140	0.140	0.2	71.7	2.5	0.0	0.0	-99.9	1.0	
H048-h048	15 cm	24h	604	-0.001	0.141	0.141	0.5	71.2	2.8	0.0	0.0	-99.9	1.0	
H054-h054	15 cm	24h	603	0.000	0.141	0.142	0.5	70.1	3.0	0.0	0.0	-99.9	1.0	
H060-h060	15 cm	24h	602	0.000	0.142	0.142	0.5	70.4	2.7	0.0	0.0	-99.9	1.0	
H066-h066	15 cm	24h	601	-0.001	0.142	0.142	0.5	71.0	2.8	0.0	6.0	-99.9	1.0	
H072-h072	15 cm	24h	600	-0.002	0.143	0.143	0.8	70.3	2.8	0.0	0.0	-99.9	1.0	

Station	Station: Seattle Observed data time period from 2/15/2024 to / 8/15/2024													
	ta time r	period f	From 2/15			224								
Data gap is					, 0,15,2	524								
Data are not														
VARIABLE	X	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF		
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.047										
h			40201	0.047										
H-h	15 cm	24h	40201	0.000	0.151	0.151	1.2	66.4	2.9	8.0	9.3	0.0	0.99	1
SCEI	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.001	0.153	0.153	1.5	64.1	2.5	0.0	6.0	-99.9	1.0	
H006-h006	15 cm	24h	611	0.000	0.152	0.152	1.5	64.0	2.1	0.0	6.0	-99.9	1.0	
H012-h012	15 cm	24h	610	0.000	0.152	0.153	1.5	63.6	2.1	0.0	6.0	-99.9	1.0	
H018-h018	15 cm	24h	609	-0.001	0.152	0.153	1.6	64.4	2.1	6.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	-0.001	0.152	0.152	1.5	64.0	2.0	6.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	-0.001	0.151	0.152	1.3	65.4	2.1	0.0	6.0	-99.9	1.0	
H036-h036	15 cm	24h	606	-0.001	0.152	0.152	1.3	65.2	2.1	0.0	6.0	-99.9	1.0	
H042-h042	15 cm	24h	605	-0.002	0.152	0.152	1.2	64.6	2.1	0.0	6.0	-99.9	1.0	
H048-h048	15 cm	24h	604	-0.003	0.153	0.153	1.3	64.7	2.5	0.0	6.0	-99.9	1.0	
H054-h054	15 cm	24h	603	-0.003	0.153	0.154	1.0	65.0	2.5	0.0	6.0	-99.9	1.0	
H060-h060	15 cm	24h	602	-0.002	0.154	0.154	1.2	65.3	2.7	0.0	6.0	-99.9	1.0	
H066-h066	15 cm	24h	601	-0.003	0.154	0.154	1.3	65.2	3.0	0.0	6.0	-99.9	1.0	
H072-h072	15 cm	24h	600	-0.003	0.155	0.155	1.3	66.0	3.0	0.0	6.0	-99.9	1.0	

 Table A-3. Water level skill assessment at Seattle.

Table A-4. Water level skill assessment at Tacoma.

	Station: Tacoma													
Station:				Ta	coma									
Observed dat	ta time p	period f	² rom 2/15	/2024 to	/ 8/15/20	924								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKIL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>L</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>L</td></n<>	<.5%	CORK	L
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.042										
h			40201	0.042										
H-h	15 cm	24h	40201	0.000	0.155	0.155	1.4	64.4	3.2	6.8	9.3	0.0	0.99	1
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.001	0.156	0.156	1.6	62.7	2.6	0.0	0.0	-99.9	1.0	
H006-h006	15 cm	24h	611	0.001	0.155	0.155	1.6	63.3	2.1	0.0	0.0	-99.9	1.0	
H012-h012	15 cm	24h	610	0.002	0.155	0.155	1.6	62.8	2.5	0.0	6.0	-99.9	1.0	
H018-h018	15 cm	24h	609	0.001	0.155	0.155	1.3	63.5	2.5	0.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	0.002	0.155	0.155	1.3	63.0	2.5	0.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	0.002	0.154	0.155	1.0	64.1	2.6	0.0	6.0	-99.9	1.0	
H036-h036	15 cm	24h	606	0.002	0.154	0.154	1.0	64.5	2.8	0.0	6.0	-99.9	1.0	
H042-h042	15 cm	24h	605	0.001	0.154	0.154	0.8	64.0	2.6	0.0	6.0	-99.9	1.0	
H048-h048	15 cm	24h	604	0.001	0.155	0.155	1.5	64.4	2.8	0.0	6.0	-99.9	1.0	
H054-h054	15 cm	24h	603	0.001	0.156	0.156	1.2	64.3	3.3	0.0	6.0	-99.9	1.0	
H060-h060	15 cm	24h	602	0.001	0.156	0.156	0.8	64.5	3.3	0.0	6.0	-99.9	1.0	
H066-h066	15 cm	24h	601	0.000	0.157	0.157	1.3	64.2	3.2	0.0	6.0	-99.9	1.0	
H072-h072	15 cm	24h	600	0.000	0.157	0.157	1.2	64.0	3.0	0.0	6.0	-99.9	1.0	

Station:				Dont /	Angeles									
Observed dat	ta tima r	onied 4				014								
					/ 8/15/20	024								
Data gap is			/D method											
Data are not						1								
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td></td><td>5</td></n<></td></n<>	<n< td=""><td><.5%</td><td></td><td>5</td></n<>	<.5%		5
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	-0.023										
h			40201	-0.023										ĺ
H-h	15 cm	24h	40201	0.000	0.139	0.139	1.1	73.5	2.0	5.5	6.3	0.0	0.98	0.99
SCEN	VARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.000	0.137	0.137	0.5	72.7	1.6	0.0	0.0	-99.9	1.0	
H006-h006	15 cm	24h	611	0.002	0.136	0.136	0.5	73.0	2.0	0.0	0.0	-99.9	1.0	
H012-h012	15 cm	24h	610	0.001	0.137	0.137	0.5	73.0	2.3	0.0	0.0	-99.9	1.0	
H018-h018	15 cm	24h	609	0.000	0.137	0.137	1.0	73.4	2.1	0.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	0.000	0.137	0.137	0.8	73.0	2.0	0.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	0.001	0.137	0.137	0.7	72.5	2.1	0.0	0.0	-99.9	1.0	
H036-h036	15 cm	24h	606	0.000	0.137	0.138	0.7	72.6	2.1	0.0	0.0	-99.9	1.0	
H042-h042	15 cm	24h	605	-0.001	0.139	0.139	0.7	71.6	2.3	0.0	0.0	-99.9	1.0	
H048-h048	15 cm	24h	604	-0.001	0.140	0.140	1.0	71.9	2.5	0.0	0.0	-99.9	1.0	
H054-h054	15 cm	24h	603	-0.001	0.140	0.140	0.8	71.6	2.5	0.0	0.0	-99.9	1.0	
H060-h060	15 cm	24h	602	-0.001	0.140	0.141	0.8	71.1	2.5	0.0	0.0	-99.9	1.0	
H066-h066	15 cm	24h	601	-0.002	0.141	0.141	1.0	70.9	2.5	0.0	0.0	-99.9	1.0	
H072-h072	15 cm	24h	600	-0.002	0.142	0.142	1.0	70.3	2.5	0.0	0.0	-99.9	1.0	

Table A-5. Water level skill assessment at Port Angeles.

Table A-6.	Water 1	level skill	assessment	at La	Push.
------------	---------	-------------	------------	-------	-------

Station:				La	Push									
Observed dat	ta time p	eriod f	from 2/15	/2024 to	/ 8/15/20	ð24								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	< N	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	-0.058										
h			40201	-0.058										
H-h	15 cm	24h	40201	0.000	0.125	0.125	2.0	80.2	0.5	7.8	4.8	0.0	0.99	0.99
SCEI	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.001	0.126	0.126	2.1	81.2	0.5	12.0	0.0	-99.9	1.0	
H006-h006	15 cm	24h	611	-0.002	0.125	0.125	2.0	81.3	0.5	12.0	0.0	-99.9	1.0	
H012-h012	15 cm	24h	610	-0.002	0.125	0.125	2.1	81.1	0.5	12.0	0.0	-99.9	1.0	
H018-h018	15 cm	24h	609	-0.003	0.124	0.124	2.1	81.8	0.5	12.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	-0.003	0.124	0.124	2.3	80.8	0.5	12.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	-0.003	0.125	0.125	2.5	81.2	0.5	12.0	0.0	-99.9	1.0	
H036-h036	15 cm	24h	606	-0.003	0.125	0.125	2.3	80.0	0.5	12.0	0.0	-99.9	1.0	
H042-h042	15 cm	24h	605	-0.003	0.126	0.126	2.3	80.7	0.5	12.0	0.0	-99.9	1.0	
H048-h048	15 cm	24h	604	-0.004	0.126	0.126	2.3	80.8	0.5	12.0	0.0	-99.9	1.0	
H054-h054	15 cm	24h	603	-0.003	0.127	0.127	2.5	80.6	0.3	12.0	0.0	-99.9	1.0	
H060-h060	15 cm	24h	602	-0.004	0.127	0.127	2.5	80.1	0.5	12.0	0.0	-99.9	1.0	
H066-h066	15 cm	24h	601	-0.004	0.127	0.127	2.8	80.0	0.5	36.0	0.0	-99.9	1.0	
H072-h072	15 cm	24h	600	-0.004	0.127	0.127	2.8	80.2	0.5	24.0	0.0	-99.9	1.0	

Station:				Cani	baldi									
Observed dat	to timo r	onied 4	(nom)/15			224								
				•	/ 8/15/20	024								
Data gap is		0	/D method											
Data are not														
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>contr</td><td>JATEL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>contr</td><td>JATEL</td></n<>	<.5%	contr	JATEL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	-0.019										
h			40201	-0.019										
H-h	15 cm	24h	40201	0.000	0.215	0.215	10.4	50.7	4.9	5.7	6.2	0.0	0.96	0.98
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.006	0.198	0.198	9.0	52.8	3.8	0.0	0.0	-99.9	1.0	
H006-h006	15 cm	24h	611	0.000	0.201	0.202	8.8	50.1	4.4	0.0	0.0	-99.9	1.0	
H012-h012	15 cm	24h	610	-0.002	0.202	0.202	8.7	50.7	3.9	0.0	0.0	-99.9	1.0	
H018-h018	15 cm	24h	609	-0.001	0.202	0.202	8.9	50.4	4.1	0.0	0.0	-99.9	1.0	
H024-h024	15 cm	24h	608	-0.003	0.201	0.201	9.0	50.2	4.1	0.0	0.0	-99.9	1.0	
H030-h030	15 cm	24h	607	-0.003	0.201	0.201	8.9	50.6	4.0	0.0	0.0	-99.9	1.0	
H036-h036	15 cm	24h	606	-0.004	0.201	0.201	8.7	50.8	4.3	0.0	0.0	-99.9	1.0	
H042-h042	15 cm	24h	605	-0.003	0.200	0.200	8.4	51.6	3.8	0.0	0.0	-99.9	1.0	
H048-h048	15 cm	24h	604	-0.003	0.200	0.200	8.9	50.8	4.0	0.0	0.0	-99.9	1.0	
H054-h054	15 cm	24h	603	-0.003	0.200	0.200	8.8	51.1	3.3	0.0	0.0	-99.9	1.0	
H060-h060	15 cm	24h	602	-0.003	0.200	0.200	9.0	51.2	3.8	0.0	0.0	-99.9	1.0	
H066-h066	15 cm	24h	601	-0.003	0.199	0.199	8.7	51.6	3.3	0.0	0.0	-99.9	1.0	
H072-h072	15 cm	24h	600	-0.003	0.199	0.200	9.0	52.2	4.0	0.0	0.0	-99.9	1.0	

 Table A-7. Water level skill assessment at Garibaldi.

	Station: South Beach													
Station:				South	Beach									
Observed dat	ta time p	period f	from 2/15	/2024 to	/ 8/15/20	924								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	-0.003										
h			40201	-0.003										
H-h	15 cm	24h	40201	0.000	0.113	0.113	0.8	83.0	0.3	4.3	1.8	0.0	0.99	0.99
SCE	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.001	0.111	0.111	1.0	83.7	0.0	0.0	0.0	-99.9	0.99	
H006-h006	15 cm	24h	611	-0.001	0.111	0.111	1.0	83.0	0.0	0.0	0.0	-99.9	0.99	
H012-h012	15 cm	24h	610	-0.002	0.111	0.111	1.0	83.1	0.0	0.0	0.0	-99.9	0.99	
H018-h018	15 cm	24h	609	-0.003	0.109	0.109	1.0	84.2	0.0	0.0	0.0	-99.9	0.99	
H024-h024	15 cm	24h	608	-0.004	0.109	0.109	1.0	84.0	0.0	0.0	0.0	-99.9	0.99	
H030-h030	15 cm	24h	607	-0.004	0.109	0.109	0.8	83.9	0.0	0.0	0.0	-99.9	0.99	
H036-h036	15 cm	24h	606	-0.004	0.108	0.108	0.8	84.3	0.0	0.0	0.0	-99.9	0.99	
H042-h042	15 cm	24h	605	-0.004	0.108	0.108	0.8	84.6	0.0	0.0	0.0	-99.9	0.99	
H048-h048	15 cm	24h	604	-0.004	0.109	0.109	0.8	83.9	0.2	0.0	0.0	-99.9	0.99	
H054-h054	15 cm	24h	603	-0.004	0.109	0.109	1.0	84.4	0.0	0.0	0.0	-99.9	0.99	
H060-h060	15 cm	24h	602	-0.004	0.109	0.109	1.0	83.9	0.0	0.0	0.0	-99.9	0.99	
H066-h066	15 cm	24h	601	-0.005	0.110	0.110	1.2	84.2	0.0	0.0	0.0	-99.9	0.99	
H072-h072	15 cm	24h	600	-0.005	0.111	0.111	1.3	84.2	0.0	0.0	0.0	-99.9	0.99	

Station:				A										
					oria									
Observed dat				-	/ 8/15/20	024								
Data gap is			/D method											
Data are not	t filtere	ed												
VARIABLE	х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<>	<.5%	CONN	JKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н														
h			40201	-0.047										
H-h	15 cm	24h	40201	0.000	0.106	0.106	0.3	84.4	0.1	3.1	2.9	0.0	0.99	1
SCEN	VARIO: SE	MI-OPEF	ATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.002	0.107	0.107	0.3	84.5	0.0	0.0	0.0	-99.9	0.99	
H006-h006	15 cm	24h	611	0.001	0.105	0.106	0.2	84.6	0.0	0.0	0.0	-99.9	0.99	
H012-h012	15 cm	24h	610	0.000	0.106	0.106	0.2	84.8	0.0	0.0	0.0	-99.9	0.99	
H018-h018	15 cm	24h	609	0.000	0.107	0.107	0.3	85.2	0.0	0.0	0.0	-99.9	0.99	
H024-h024	15 cm	24h	608	-0.002	0.105	0.105	0.3	85.5	0.0	0.0	0.0	-99.9	0.99	
H030-h030	15 cm	24h	607	-0.001	0.106	0.106	0.2	85.2	0.0	0.0	0.0	-99.9	0.99	
H036-h036	15 cm	24h	606	-0.003	0.106	0.106	0.2	85.3	0.0	0.0	0.0	-99.9	0.99	
H042-h042	15 cm	24h	605	-0.003	0.106	0.106	0.0	85.0	0.0	0.0	0.0	-99.9	0.99	
H048-h048	15 cm	24h	604	-0.004	0.106	0.106	0.2	85.1	0.0	0.0	0.0	-99.9	0.99	
H054-h054	15 cm	24h	603	-0.003	0.105	0.105	0.2	86.1	0.0	0.0	0.0	-99.9	0.99	
H060-h060	15 cm	24h	602	-0.003	0.107	0.107	0.2	85.7	0.0	0.0	0.0	-99.9	0.99	
H066-h066	15 cm	24h	601	-0.003	0.106	0.106	0.3	86.4	0.0	6.0	0.0	-99.9	0.99	
H072-h072	15 cm	24h	600	-0.003	0.107	0.107	0.2	85.3	0.0	0.0	0.0	-99.9	0.99	

 Table A-9. Water level skill assessment at Astoria.

Table A-10	. Water leve	l skill assessi	nent at Skamokawa.
------------	--------------	-----------------	--------------------

					-									
Station:				Skam	okawa									
Observed dat	ta time p	eriod f	rom 2/15	/2024 to	/ 8/15/20	024								
Data gap is	filled u	ısing S∖	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.030										
h			40201	0.030										
H-h	15 cm	24h	40201	0.000	0.113	0.113	0.6	82.0	0.1	4.2	2.9	0.0	1.0	0.99
SCEN	NARIO: SE	MI-OPER	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.001	0.115	0.115	0.7	81.5	0.0	0.0	0.0	-99.9	0.99	
H006-h006	15 cm	24h	611	0.001	0.115	0.115	0.7	81.3	0.0	0.0	0.0	-99.9	0.99	
H012-h012	15 cm	24h	610	-0.003	0.121	0.121	1.0	79.7	0.0	0.0	0.0	-99.9	0.99	
H018-h018	15 cm	24h	609	0.000	0.114	0.114	0.5	81.6	0.0	0.0	0.0	-99.9	0.99	
H024-h024	15 cm	24h	608	-0.005	0.121	0.121	1.0	78.0	0.2	0.0	0.0	-99.9	0.98	
H030-h030	15 cm	24h	607	-0.004	0.118	0.118	0.5	78.9	0.0	0.0	0.0	-99.9	0.99	
H036-h036	15 cm	24h	606	-0.007	0.120	0.120	1.0	78.7	0.0	0.0	0.0	-99.9	0.99	
H042-h042	15 cm	24h	605	-0.006	0.119	0.119	0.8	77.5	0.0	0.0	0.0	-99.9	0.99	
H048-h048	15 cm	24h	604	-0.007	0.119	0.119	0.7	78.5	0.2	0.0	0.0	-99.9	0.99	
H054-h054	15 cm	24h	603	-0.006	0.119	0.119	0.5	78.4	0.2	0.0	0.0	-99.9	0.99	
H060-h060	15 cm	24h	602	-0.005	0.120	0.120	0.5	76.9	0.0	0.0	0.0	-99.9	0.98	
H066-h066	15 cm	24h	601	-0.004	0.121	0.121	1.0	78.0	0.0	0.0	0.0	-99.9	0.98	
H072-h072	15 cm	24h	600	-0.002	0.120	0.121	0.8	79.0	0.0	0.0	0.0	-99.9	0.98	

Charteland				1.1-										
Station:					una									
Observed dat				•	/ 8/15/20	824								
Data gap is			/D method											
Data are not	t filtere	ed												
VARIABLE	х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<>	<.5%	CONN	JKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.060										
h			40201	0.060										
H-h	15 cm	24h	40201	0.000	0.116	0.116	1.0	80.7	0.1	5.2	1.7	0.0	1.0	1.0
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.001	0.119	0.119	1.3	80.1	0.2	0.0	0.0	-99.9	0.98	
H006-h006	15 cm	24h	611	0.001	0.120	0.120	1.0	79.1	0.2	0.0	0.0	-99.9	0.98	
H012-h012	15 cm	24h	610	-0.004	0.123	0.123	1.5	79.3	0.0	6.0	0.0	-99.9	0.98	
H018-h018	15 cm	24h	609	0.000	0.121	0.121	1.0	76.8	0.3	6.0	0.0	-99.9	0.98	
H024-h024	15 cm	24h	608	-0.007	0.126	0.126	1.3	75.0	0.3	0.0	0.0	-99.9	0.98	
H030-h030	15 cm	24h	607	-0.006	0.123	0.123	1.0	76.4	0.5	0.0	0.0	-99.9	0.98	
H036-h036	15 cm	24h	606	-0.009	0.126	0.125	1.5	75.9	0.3	12.0	0.0	-99.9	0.98	
H042-h042	15 cm	24h	605	-0.009	0.125	0.125	1.2	76.4	0.3	12.0	0.0	-99.9	0.98	
H048-h048	15 cm	24h	604	-0.010	0.126	0.126	1.2	76.2	0.3	12.0	0.0	-99.9	0.98	
H054-h054	15 cm	24h	603	-0.007	0.126	0.126	1.5	76.5	0.5	12.0	0.0	-99.9	0.98	
H060-h060	15 cm	24h	602	-0.005	0.128	0.128	1.2	75.6	0.5	12.0	0.0	-99.9	0.98	
H066-h066	15 cm	24h	601	-0.003	0.128	0.128	1.5	76.0	0.7	12.0	0.0	-99.9	0.98	
H072-h072	15 cm	24h	600	0.000	0.131	0.131	1.8	75.3	1.2	0.0	0.0	-99.9	0.98	

 Table A-11. Water level skill assessment at Wauna.

	-				-									
Station:				Lon	gview									
Observed dat	a time p	eriod f	from 2/15	/2024 to	/ 8/15/20	024								
Data gap is	filled u	using SN	/D method											
Data are not	: filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCEN	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.234										
h			40201	0.234										
H-h	15 cm	24h	40201	0.000	0.095	0.095	1.0	89.8	0.0	13.3	0.0	0.0	0.98	1.0
SCEN	ARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	0.000	0.097	0.097	1.1	89.1	0.0	18.0	0.0	-99.9	0.97	
H006-h006	15 cm	24h	611	0.002	0.101	0.101	1.1	86.7	0.0	12.0	0.0	-99.9	0.97	
H012-h012	15 cm	24h	610	-0.007	0.116	0.115	2.0	83.1	0.0	24.0	0.0	-99.9	0.96	
H018-h018	15 cm	24h	609	-0.005	0.111	0.111	1.3	82.8	0.2	24.0	0.0	-99.9	0.97	
H024-h024	15 cm	24h	608	-0.013	0.121	0.120	2.1	80.6	0.3	30.0	0.0	-99.9	0.96	
H030-h030	15 cm	24h	607	-0.015	0.123	0.122	1.6	78.4	0.5	42.0	0.0	-99.9	0.96	
H036-h036	15 cm	24h	606	-0.017	0.128	0.127	2.1	76.9	0.8	36.0	0.0	-99.9	0.95	
H042-h042	15 cm	24h	605	-0.018	0.129	0.128	2.6	77.2	0.7	54.0	0.0	-99.9	0.95	
H048-h048	15 cm	24h	604	-0.018	0.131	0.130	2.5	77.3	0.8	60.0	0.0	-99.9	0.95	
H054-h054	15 cm	24h	603	-0.015	0.133	0.133	2.5	75.6	1.2	48.0	0.0	-99.9	0.95	
H060-h060	15 cm	24h	602	-0.009	0.137	0.136	2.5	74.9	1.2	66.0	0.0	-99.9	0.95	
H066-h066	15 cm	24h	601	-0.005	0.143	0.143	3.3	72.0	1.3	66.0	0.0	-99.9	0.94	
H072-h072	15 cm	24h	600	-0.001	0.150	0.150	3.0	69.8	2.3	66.0	6.0	-99.9	0.94	

		1												
Station:					Helens									
Observed dat	ta time p	eriod f	From 2/15	/2024 to	/ 8/15/2	ð24								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.335										
h			40201	0.335										
H-h	15 cm	24h	40201	0.000	0.112	0.112	1.7	83.9	0.0	21.3	0.2	0.0	0.95	1.0
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.001	0.112	0.112	2.0	83.2	0.0	24.0	0.0	-99.9	0.95	
H006-h006	15 cm	24h	611	-0.001	0.115	0.115	2.1	82.5	0.0	18.0	0.0	-99.9	0.94	
H012-h012	15 cm	24h	610	-0.008	0.133	0.133	2.8	74.6	0.5	18.0	0.0	-99.9	0.92	
H018-h018	15 cm	24h	609	-0.015	0.134	0.134	2.5	75.0	0.3	12.0	0.0	-99.9	0.92	
H024-h024	15 cm	24h	608	-0.018	0.145	0.144	3.3	70.4	0.7	18.0	12.0	-99.9	0.91	
H030-h030	15 cm	24h	607	-0.024	0.153	0.151	4.3	66.9	0.8	12.0	12.0	-99.9	0.90	
H036-h036	15 cm	24h	606	-0.025	0.158	0.156	5.1	67.0	0.7	18.0	12.0	-99.9	0.90	
H042-h042	15 cm	24h	605	-0.027	0.161	0.159	5.5	66.9	1.3	30.0	12.0	-99.9	0.89	
H048-h048	15 cm	24h	604	-0.026	0.165	0.163	5.8	66.9	2.0	18.0	12.0	-99.9	0.89	
H054-h054	15 cm	24h	603	-0.021	0.169	0.168	6.0	65.2	2.2	42.0	12.0	-99.9	0.88	
H060-h060	15 cm	24h	602	-0.012	0.176	0.175	5.6	64.1	2.8	54.0	12.0	-99.9	0.87	
H066-h066	15 cm	24h	601	-0.006	0.186	0.186	5.7	59.2	4.5	54.0	36.0	-99.9	0.85	
H072-h072	15 cm	24h	600	0.000	0.197	0.197	6.2	55.2	6.5	54.0	42.0	-99.9	0.83	

Table A-13. Water level skill assessment at St. Helens.

Table A-14.	Water level skil	l assessment at	Vancouver.
-------------	------------------	-----------------	------------

								-						
Station:					ouver									
Observed dat	ta time p	eriod f	From 2/15	/2024 to	/ 8/15/2	924								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CODD	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Н			40201	0.420										
h			40201	0.420										
H-h	15 cm	24h	40201	0.000	0.112	0.112	1.7	84.4	0.0	21.6	0.0	0.0	0.95	0.97
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	15 cm	24h	612	-0.002	0.112	0.112	1.5	85.6	0.0	12.0	0.0	-99.9	0.95	
H006-h006	15 cm	24h	611	-0.003	0.124	0.124	2.8	81.2	0.0	12.0	0.0	-99.9	0.94	
H012-h012	15 cm	24h	610	-0.007	0.138	0.138	3.0	72.0	0.5	12.0	12.0	-99.9	0.93	
H018-h018	15 cm	24h	609	-0.024	0.152	0.150	5.4	71.1	0.5	12.0	12.0	-99.9	0.91	
H024-h024	15 cm	24h	608	-0.020	0.161	0.160	5.6	67.6	1.3	24.0	12.0	-99.9	0.90	
H030-h030	15 cm	24h	607	-0.031	0.174	0.171	8.2	65.2	1.6	48.0	18.0	-99.9	0.89	
H036-h036	15 cm	24h	606	-0.031	0.179	0.177	7.9	63.4	2.0	48.0	18.0	-99.9	0.88	
H042-h042	15 cm	24h	605	-0.033	0.184	0.181	8.6	64.3	2.5	78.0	42.0	-99.9	0.87	
H048-h048	15 cm	24h	604	-0.031	0.190	0.188	9.1	63.7	2.5	54.0	24.0	-99.9	0.86	
H054-h054	15 cm	24h	603	-0.023	0.198	0.197	8.3	60.4	4.1	66.0	30.0	-99.9	0.85	
H060-h060	15 cm	24h	602	-0.012	0.208	0.208	8.5	57.6	6.1	90.0	78.0	-99.9	0.83	
H066-h066	15 cm	24h	601	-0.003	0.222	0.222	8.7	52.6	8.2	66.0	84.0	-99.9	0.81	
H072-h072	15 cm	24h	600	0.004	0.237	0.237	9.5	51.3	11.0	99.0	90.0	-99.9	0.78	

APPENDIX B. SURFACE WATER TEMPERATURE SKILL ASSESSMENT TABLES

Station:				Friday	Harbor									
Observed dat	ta time p	period	from 2/15	/2024 to	/ 8/15/20	ð24								
Data gap is	filled u	using S	SVD method											
Data are not	t filtere	ed												
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONN</td><td>JKILL</td></n<>	<.5%	CONN	JKILL
SCE	NARIO: S	EMI-OP	ERATIONAL	NOWCAST										
Т			43533	10.030										
t			43533	9.926										
T-t	3.0 C	24h	43533	0.104	0.449	0.437	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	0.97
SCEI	NARIO: SE	MI-OP	ERATIONAL	FORECAST										
H000-h000	3 C	24h	668	0.160	0.342	0.303	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H006-h006	3 C	24h	668	0.157	0.342	0.304	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H012-h012	3 C	24h	668	0.151	0.338	0.303	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H018-h018	3 C	24h	668	0.144	0.337	0.305	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H024-h024	3 C	24h	668	0.132	0.336	0.309	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H030-h030	3 C	24h	668	0.122	0.346	0.324	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H036-h036	3 C	24h	668	0.114	0.353	0.334	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H042-h042	3 C	24h	668	0.108	0.355	0.338	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	
H048-h048	3 C	24h	668	0.098	0.358	0.344	0.0	100.0	0.0	0.0	0.0	-99.9	0.95	
H054-h054	3 C	24h	667	0.097	0.371	0.358	0.0	100.0	0.0	0.0	0.0	-99.9	0.95	
H060-h060	3 C	24h	666	0.089	0.373	0.363	0.0	100.0	0.0	0.0	0.0	-99.9	0.95	
H066-h066	3 C	24h	665	0.085	0.382	0.372	0.0	100.0	0.0	0.0	0.0	-99.9	0.95	
H072-h072	3 C	24h	664	0.077	0.385	0.378	0.0	100.0	0.0	0.0	0.0	-99.9	0.95	

Table B-1. Surface water temperature skill assessment at Fr.	day Harbor.
--	-------------

Table B-2. Surface water temperature skill assessment at Port Townsend.

			•											
Station:				Port T	ownsend									
Observed dat	a time p	period f	from 2/15	/2024 to	/ 8/15/2	024								
Data gap is	filled u	using SN	/D method	l										
Data are not	: filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			43533	10.523										
t			43533	10.161										
T-t	3.0 C	24h	43533	0.362	0.651	0.541	0.0	99.9	0.0	0.0	0.0	-99.9	0.93	0.94
SCEN	ARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	668	0.340	0.589	0.481	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H006-h006	3 C	24h	668	0.342	0.600	0.493	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H012-h012	3 C	24h	668	0.342	0.596	0.488	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H018-h018	3 C	24h	668	0.320	0.582	0.486	0.0	100.0	0.0	0.0	0.0	-99.9	0.92	
H024-h024	3 C	24h	668	0.312	0.571	0.479	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H030-h030	3 C	24h	668	0.312	0.563	0.470	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H036-h036	3 C	24h	668	0.310	0.562	0.469	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H042-h042	3 C	24h	668	0.303	0.556	0.467	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H048-h048	3 C	24h	668	0.310	0.572	0.482	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H054-h054	3 C	24h	667	0.307	0.566	0.476	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H060-h060	3 C	24h	666	0.296	0.559	0.474	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H066-h066	3 C	24h	665	0.296	0.578	0.496	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H072-h072	3 C	24h	664	0.300	0.571	0.486	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	

Station:				Tao	coma									
Observed dat	ta time p	period f	⁻ rom 2/15	/2024 to	/ 8/15/20	ð24								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONK</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONK</td><td>JKILL</td></n<>	<.5%	CONK	JKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			43533	11.281										
t			43533	11.098										
T-t	3.0 C	24h	43533	0.182	1.252	1.239	0.0	98.1	0.0	0.0	0.0	-99.9	0.93	0.9
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	668	0.083	1.187	1.185	0.0	99.0	0.0	0.0	0.0	-99.9	0.93	
H006-h006	3 C	24h	668	0.096	1.202	1.199	0.0	99.0	0.0	0.0	0.0	-99.9	0.93	
H012-h012	3 C	24h	668	0.100	1.227	1.223	0.0	98.5	0.0	0.0	0.0	-99.9	0.93	
H018-h018	3 C	24h	668	0.098	1.238	1.235	0.0	99.3	0.0	0.0	0.0	-99.9	0.93	
H024-h024	3 C	24h	668	0.101	1.257	1.254	0.0	99.0	0.0	0.0	0.0	-99.9	0.93	
H030-h030	3 C	24h	668	0.104	1.270	1.267	0.0	98.5	0.0	0.0	0.0	-99.9	0.93	
H036-h036	3 C	24h	668	0.086	1.274	1.272	0.0	98.1	0.0	0.0	0.0	-99.9	0.93	
H042-h042	3 C	24h	668	0.065	1.280	1.279	0.0	98.1	0.0	0.0	0.0	-99.9	0.93	
H048-h048	3 C	24h	668	0.055	1.275	1.275	0.0	98.5	0.0	0.0	0.0	-99.9	0.93	
H054-h054	3 C	24h	667	0.048	1.278	1.278	0.0	98.1	0.0	0.0	0.0	-99.9	0.93	
H060-h060	3 C	24h	666	0.035	1.289	1.289	0.0	98.0	0.0	0.0	0.0	-99.9	0.93	
H066-h066	3 C	24h	665	0.034	1.292	1.293	0.0	98.2	0.0	0.0	0.0	-99.9	0.93	
H072-h072	3 C	24h	664	0.032	1.273	1.274	0.0	97.9	0.0	0.0	0.0	-99.9	0.93	

Table B-3. Surface water temperature skill assessment at Tacoma.

Table B-4. Surface water temperature skill assessment at Port Angeles.	
---	--

-		r												
Station:				Port /	Angeles									
Observed da	ta time p	period f	from 2/15	6/2024 to	/ 8/15/2	024								
Data gap is	filled u	using S\	/D method											
Data are no	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	< N	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			43285	10.360										
t			43285	9.934										
T-t	3.0 C	24h	43285	0.426	0.732	0.595	0.0	100.0	0.0	0.0	0.0	-99.9	0.90	0.92
SCEI	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	664	0.445	0.751	0.606	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H006-h006	3 C	24h	664	0.455	0.764	0.614	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H012-h012	3 C	24h	664	0.454	0.768	0.620	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H018-h018	3 C	24h	664	0.451	0.771	0.626	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H024-h024	3 C	24h	664	0.444	0.773	0.633	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H030-h030	3 C	24h	664	0.443	0.778	0.640	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H036-h036	3 C	24h	664	0.438	0.786	0.653	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H042-h042	3 C	24h	664	0.431	0.787	0.659	0.0	99.8	0.0	0.0	0.0	-99.9	0.89	
H048-h048	3 C	24h	664	0.420	0.779	0.657	0.0	99.8	0.0	0.0	0.0	-99.9	0.89	
H054-h054	3 C	24h	663	0.419	0.787	0.666	0.0	100.0	0.0	0.0	0.0	-99.9	0.89	
H060-h060	3 C	24h	662	0.415	0.795	0.678	0.0	99.8	0.0	0.0	0.0	-99.9	0.88	
H066-h066	3 C	24h	661	0.403	0.785	0.674	0.0	99.7	0.0	0.0	0.0	-99.9	0.88	
H072-h072	3 C	24h	660	0.387	0.771	0.667	0.0	99.5	0.0	0.0	0.0	-99.9	0.88	

Charteland				N I										
Station:					n Bay									
Observed dat					/ 8/15/20	ð24								
Data gap is	filled u	ising S\	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>COKK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>COKK</td><td>SKILL</td></n<>	<.5%	COKK	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			42601	9.746										
t			42601	10.416										
T-t	3.0 C	24h	42601	-0.669	1.300	1.114	0.0	97.3	0.0	0.0	0.0	-99.9	0.47	0.54
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	653	-0.544	1.122	0.982	0.0	99.2	0.0	0.0	0.0	-99.9	0.47	
H006-h006	3 C	24h	653	-0.550	1.127	0.984	0.0	99.2	0.0	0.0	0.0	-99.9	0.47	
H012-h012	3 C	24h	653	-0.569	1.142	0.991	0.0	98.9	0.0	0.0	0.0	-99.9	0.46	
H018-h018	3 C	24h	653	-0.585	1.153	0.994	0.0	99.2	0.0	0.0	0.0	-99.9	0.45	
H024-h024	3 C	24h	653	-0.604	1.169	1.001	0.0	99.1	0.0	0.0	0.0	-99.9	0.44	
H030-h030	3 C	24h	653	-0.620	1.177	1.002	0.0	99.2	0.0	0.0	0.0	-99.9	0.44	
H036-h036	3 C	24h	653	-0.636	1.188	1.005	0.0	99.1	0.0	0.0	0.0	-99.9	0.43	
H042-h042	3 C	24h	653	-0.643	1.199	1.012	0.0	98.8	0.0	0.0	0.0	-99.9	0.42	
H048-h048	3 C	24h	653	-0.653	1.207	1.016	0.0	98.8	0.0	0.0	0.0	-99.9	0.41	
H054-h054	3 C	24h	652	-0.664	1.212	1.014	0.0	98.6	0.0	0.0	0.0	-99.9	0.41	
H060-h060	3 C	24h	651	-0.674	1.218	1.015	0.0	98.6	0.0	0.0	0.0	-99.9	0.40	
H066-h066	3 C	24h	650	-0.689	1.228	1.018	0.0	98.2	0.0	0.0	0.0	-99.9	0.39	
H072-h072	3 C	24h	649	-0.701	1.235	1.017	0.0	98.2	0.0	0.0	0.0	-99.9	0.39	

 Table B-5. Surface water temperature skill assessment at Neah Bay.

Table B-6. Surface water temperature skill assessment at La Push.

			-											
Station:				La	Push									
Observed dat	ta time p	eriod f	from 2/15	/2024 to	/ 8/15/20	024								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			43533	11.685										
t			43533	10.409										
T-t	3.0 C	24h	43533	1.276	2.064	1.622	0.1	84.5	0.1	3.1	4.0	-99.9	0.60	0.68
SCEN	VARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	668	1.224	2.024	1.613	0.3	85.0	0.0	0.0	0.0	-99.9	0.61	
H006-h006	3 C	24h	668	1.214	2.020	1.616	0.3	85.5	0.0	0.0	0.0	-99.9	0.60	
H012-h012	3 C	24h	668	1.185	1.996	1.607	0.3	86.5	0.1	0.0	0.0	-99.9	0.61	
H018-h018	3 C	24h	668	1.151	1.985	1.618	0.4	87.3	0.0	0.0	0.0	-99.9	0.60	
H024-h024	3 C	24h	668	1.107	1.960	1.619	0.4	88.6	0.0	0.0	0.0	-99.9	0.60	
H030-h030	3 C	24h	668	1.062	1.930	1.613	0.3	89.8	0.0	0.0	0.0	-99.9	0.60	
H036-h036	3 C	24h	668	1.012	1.893	1.602	0.3	90.1	0.0	0.0	0.0	-99.9	0.60	
H042-h042	3 C	24h	668	0.987	1.892	1.615	0.4	90.3	0.0	0.0	0.0	-99.9	0.59	
H048-h048	3 C	24h	668	0.954	1.881	1.622	0.4	90.1	0.0	0.0	0.0	-99.9	0.58	
H054-h054	3 C	24h	667	0.928	1.871	1.626	0.3	90.9	0.0	0.0	0.0	-99.9	0.58	
H060-h060	3 C	24h	666	0.898	1.840	1.607	0.5	91.3	0.0	0.0	0.0	-99.9	0.59	
H066-h066	3 C	24h	665	0.878	1.829	1.605	0.5	91.6	0.0	0.0	0.0	-99.9	0.59	
H072-h072	3 C	24h	664	0.850	1.811	1.600	0.5	91.4	0.0	0.0	0.0	-99.9	0.59	

Station:				Grays	Harbor									
Observed dat	ta time p	eriod f	⁻ rom 2/15	/2024 to	/ 8/15/20	ð24								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			37273	11.289										
t			37273	11.534										
T-t	3.0 C	24h	37273	-0.245	0.626	0.576	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	0.96
SCEN	NARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	608	-0.265	0.627	0.569	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H006-h006	3 C	24h	608	-0.272	0.632	0.571	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H012-h012	3 C	24h	608	-0.303	0.648	0.573	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H018-h018	3 C	24h	608	-0.333	0.669	0.581	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H024-h024	3 C	24h	608	-0.357	0.685	0.585	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H030-h030	3 C	24h	608	-0.390	0.702	0.585	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H036-h036	3 C	24h	608	-0.409	0.712	0.584	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H042-h042	3 C	24h	608	-0.426	0.722	0.583	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H048-h048	3 C	24h	608	-0.434	0.728	0.585	0.0	100.0	0.0	0.0	0.0	-99.9	0.94	
H054-h054	3 C	24h	607	-0.450	0.753	0.604	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H060-h060	3 C	24h	606	-0.465	0.761	0.603	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H066-h066	3 C	24h	605	-0.477	0.770	0.605	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H072-h072	3 C	24h	604	-0.493	0.790	0.618	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	

 Table B-7. Surface water temperature skill assessment at Grays Harbor.

Table B-8. Surface	water temperature skill assessment at Astoria	Canyon.

1														
Station:					a Canyon									
Observed dat	ta time p	eriod f	from 2/15	/2024 to	/ 8/15/2	024								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			38768	11.660										
t			38768	13.005										
T-t	3.0 C	24h	38768	-1.345	1.703	1.045	0.0	90.9	0.0	0.0	0.0	-99.9	0.87	0.78
SCEN	VARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	589	-1.269	1.638	1.038	0.0	90.5	0.0	0.0	0.0	-99.9	0.88	
H006-h006	3 C	24h	590	-1.277	1.650	1.046	0.0	91.0	0.0	0.0	0.0	-99.9	0.88	
H012-h012	3 C	24h	591	-1.323	1.696	1.063	0.0	90.0	0.0	0.0	0.0	-99.9	0.87	
H018-h018	3 C	24h	592	-1.356	1.724	1.065	0.0	90.0	0.0	0.0	0.0	-99.9	0.88	
H024-h024	3 C	24h	593	-1.393	1.766	1.087	0.0	89.2	0.0	0.0	0.0	-99.9	0.87	
H030-h030	3 C	24h	594	-1.428	1.794	1.087	0.0	88.6	0.0	0.0	0.0	-99.9	0.87	
H036-h036	3 C	24h	595	-1.453	1.823	1.102	0.0	88.1	0.0	0.0	0.0	-99.9	0.87	
H042-h042	3 C	24h	596	-1.481	1.854	1.116	0.0	85.9	0.0	0.0	0.0	-99.9	0.86	
H048-h048	3 C	24h	597	-1.506	1.881	1.127	0.0	85.6	0.0	0.0	0.0	-99.9	0.86	
H054-h054	3 C	24h	597	-1.518	1.891	1.129	0.0	85.6	0.0	0.0	0.0	-99.9	0.86	
H060-h060	3 C	24h	597	-1.535	1.898	1.117	0.0	85.8	0.0	0.0	0.0	-99.9	0.86	
H066-h066	3 C	24h	597	-1.550	1.910	1.116	0.0	84.8	0.0	0.0	0.0	-99.9	0.86	
H072-h072	3 C	24h	597	-1.568	1.927	1.121	0.0	85.6	0.0	0.0	0.0	-99.9	0.86	

Station:				Gari	baldi									
Observed dat	ta time n	eriod f	rom 2/15			024								
Data gap is						-								
Data are not														
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF		
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			31062	10.472										
t			31062	11.320										
T-t	3.0 C	24h	31062	-0.849	1.311	0.999	0.0	95.0	0.0	0.0	0.0	-99.9	0.55	0.64
SCEN	NARIO: SE	MI-OPER	RATIONAL	FORECAST										
H000-h000	3 C	24h	503	-0.849	1.317	1.008	0.0	95.4	0.0	0.0	0.0	-99.9	0.55	
H006-h006	3 C	24h	502	-0.857	1.324	1.010	0.0	95.2	0.0	0.0	0.0	-99.9	0.55	
H012-h012	3 C	24h	501	-0.872	1.339	1.017	0.0	95.0	0.0	0.0	0.0	-99.9	0.54	
H018-h018	3 C	24h	500	-0.890	1.343	1.006	0.0	95.2	0.0	0.0	0.0	-99.9	0.55	
H024-h024	3 C	24h	499	-0.928	1.366	1.003	0.0	95.2	0.0	0.0	0.0	-99.9	0.55	
H030-h030	3 C	24h	498	-0.948	1.377	0.999	0.0	94.8	0.0	0.0	0.0	-99.9	0.56	
H036-h036	3 C	24h	497	-0.960	1.385	0.999	0.0	95.0	0.0	0.0	0.0	-99.9	0.56	
H042-h042	3 C	24h	496	-0.987	1.405	1.001	0.0	94.8	0.0	0.0	0.0	-99.9	0.56	
H048-h048	3 C	24h	495	-0.996	1.410	0.999	0.0	95.2	0.0	0.0	0.0	-99.9	0.56	
H054-h054	3 C	24h	494	-1.017	1.432	1.010	0.0	94.3	0.0	0.0	0.0	-99.9	0.55	
H060-h060	3 C	24h	493	-1.042	1.460	1.024	0.0	94.3	0.0	0.0	0.0	-99.9	0.53	
H066-h066	3 C	24h	492	-1.049	1.479	1.044	0.0	94.3	0.0	0.0	0.0	-99.9	0.52	
H072-h072	3 C	24h	492	-1.046	1.484	1.053	0.0	93.3	0.0	0.0	0.0	-99.9	0.51	

Table B-9. Surface water temperature skill assessment at Garibaldi.

Table B-10. Surface	water temperature skill assessment at Longview.	

Station:				Lon	gview									
Observed dat	ta time p	period t	From 2/15	/2024 to	/ 8/15/2	ð24								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			43449	12.642										
t			43449	13.839										
T-t	3.0 C	24h	43449	-1.197	1.306	0.523	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	0.99
SCE	NARIO: SE	MI-OPER	RATIONAL	FORECAST										
H000-h000	3 C	24h	666	-1.141	1.245	0.498	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H006-h006	3 C	24h	666	-1.142	1.246	0.500	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H012-h012	3 C	24h	666	-1.144	1.249	0.500	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H018-h018	3 C	24h	666	-1.149	1.251	0.495	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H024-h024	3 C	24h	666	-1.167	1.267	0.492	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H030-h030	3 C	24h	666	-1.179	1.277	0.491	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H036-h036	3 C	24h	666	-1.186	1.282	0.486	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H042-h042	3 C	24h	666	-1.203	1.296	0.483	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H048-h048	3 C	24h	666	-1.217	1.308	0.481	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H054-h054	3 C	24h	665	-1.236	1.326	0.481	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H060-h060	3 C	24h	664	-1.249	1.340	0.485	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H066-h066	3 C	24h	663	-1.268	1.358	0.486	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
H072-h072	3 C	24h	662	-1.287	1.378	0.492	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	

			1											
Station:			Will	amette Riv	ver at Po	ortland								
Observed dat	ta time p	eriod f	from 2/15	6/2024 to	/ 8/15/2	024								
Data gap is	filled u	using SN	/D method											
Data are not	t filtere	ed												
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCE	NARIO: S	EMI-OPE	RATIONAL	NOWCAST										
Т			10022	8.358										ĺ
t			10022	8.415										
T-t	3.0 C	24h	10022	-0.057	0.199	0.191	0.0	100.0	0.0	0.0	0.0	-99.9	0.99	0.99
SCEN	VARIO: SE	MI-OPEF	RATIONAL	FORECAST										
H000-h000	3 C	24h	164	-0.059	0.208	0.200	0.0	100.0	0.0	0.0	0.0	-99.9	0.99	
H006-h006	3 C	24h	164	-0.060	0.209	0.201	0.0	100.0	0.0	0.0	0.0	-99.9	0.99	
H012-h012	3 C	24h	163	-0.067	0.234	0.225	0.0	100.0	0.0	0.0	0.0	-99.9	0.99	
H018-h018	3 C	24h	162	-0.086	0.278	0.265	0.0	100.0	0.0	0.0	0.0	-99.9	0.98	
H024-h024	3 C	24h	161	-0.107	0.336	0.319	0.0	100.0	0.0	0.0	0.0	-99.9	0.97	
H030-h030	3 C	24h	160	-0.129	0.421	0.402	0.0	100.0	0.0	0.0	0.0	-99.9	0.95	
H036-h036	3 C	24h	159	-0.148	0.506	0.485	0.0	100.0	0.0	0.0	0.0	-99.9	0.93	
H042-h042	3 C	24h	158	-0.164	0.582	0.560	0.0	100.0	0.0	0.0	0.0	-99.9	0.91	
H048-h048	3 C	24h	157	-0.184	0.654	0.630	0.0	100.0	0.0	0.0	0.0	-99.9	0.88	
H054-h054	3 C	24h	156	-0.203	0.734	0.707	0.0	100.0	0.0	0.0	0.0	-99.9	0.85	
H060-h060	3 C	24h	155	-0.226	0.810	0.780	0.0	100.0	0.0	0.0	0.0	-99.9	0.82	
H066-h066	3 C	24h	154	-0.248	0.881	0.848	0.0	100.0	0.0	0.0	0.0	-99.9	0.78	
H072-h072	3 C	24h	153	-0.269	0.958	0.923	0.0	100.0	0.0	0.0	0.0	-99.9	0.74	

Table B-11. Surface water temperature skill assessment at Willamette River at Portland.

APPENDIX C. TIME SERIES OF MODELED SURFACE WATER TEMPERATURE VERSUS OBSERVATIONS

Figure C-1. SSCOFS modeled surface water temperature versus observations at Friday Harbor.

Surface water temperature comparison between modeled and observation at 9444900

Figure C-2. SSCOFS modeled surface water temperature versus observations at Port Townsend.

Figure C-3. SSCOFS modeled surface water temperature versus observations at Tacoma.

Figure C-4. SSCOFS modeled surface water temperature versus observations at Port Angeles.

Figure C-5. SSCOFS modeled surface water temperature versus observations at Neah Bay.

Surface water temperature comparison between modeled and observation at 9442396

Figure C-6. SSCOFS modeled surface water temperature versus observations at La Push.

Figure C-7. SSCOFS modeled surface water temperature versus observations at Grays Harbor.

Surface water temperature comparison between modeled and observation at 46248

Figure C-8. SSCOFS modeled surface water temperature versus observations at Astoria Canyon.

Figure C-9. SSCOFS modeled surface water temperature versus observations at Garibaldi.

Figure C-10. SSCOFS modeled surface water temperature versus observations at Longview.

Figure C-11. SSCOFS modeled surface water temperature versus observations at Willamette Portland.

APPENDIX D. SURFACE WATER SALINITY SKILL ASSESSMENT TABLES

Station:				Sat	urn-07									
Observed dat	ta time per	iod fr	rom / 3/	23/2024 ·	to / 6/ 3	3/2024								
Data gap is	Data gap is filled using SVD method													
Data are not	t filtered													
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCI	ENARIO: SEM	II-OPEF	ATIONAL	NOWCAST										
S			41593	7.348										
S			41593	8.500										
S-s	3.5 psu	24h	41593	-1.152	3.002	2.772	3.7	80.6	0.0	4.8	0.9	-99.9	0.50	0.66
SCE	NARIO: SEM	I-OPER	ATIONAL H	ORECAST										
H000-h000	3.5 psu	24h	636	-1.102	3.002	2.794	3.6	81.1	0.0	24.0	0.0	-99.9	0.47	
H006-h006	3.5 psu	24h	636	-1.042	2.971	2.785	3.6	81.9	0.0	24.0	0.0	-99.9	0.47	
H012-h012	3.5 psu	24h	636	-0.987	2.982	2.816	3.0	80.7	0.0	24.0	0.0	-99.9	0.46	
H018-h018	3.5 psu	24h	636	-0.965	3.009	2.852	3.3	81.0	0.0	24.0	0.0	-99.9	0.44	
H024-h024	3.5 psu	24h	636	-0.951	2.975	2.821	3.1	80.5	0.0	24.0	0.0	-99.9	0.44	
H030-h030	3.5 psu	24h	636	-0.891	2.940	2.804	2.5	80.7	0.0	24.0	0.0	-99.9	0.45	
H036-h036	3.5 psu	24h	636	-0.925	2.931	2.783	3.1	81.3	0.0	24.0	0.0	-99.9	0.46	
H042-h042	3.5 psu	24h	636	-0.880	2.927	2.794	2.2	80.7	0.0	12.0	0.0	-99.9	0.45	
H048-h048	3.5 psu	24h	636	-0.879	2.910	2.777	2.8	80.5	0.0	12.0	0.0	-99.9	0.46	
H054-h054	3.5 psu	24h	637	-0.898	2.896	2.755	2.5	81.2	0.0	6.0	0.0	-99.9	0.47	
H060-h060	3.5 psu	24h	636	-0.839	2.882	2.760	2.8	81.0	0.0	6.0	0.0	-99.9	0.47	
H066-h066	3.5 psu	24h	636	-0.864	2.902	2.773	2.8	80.0	0.0	6.0	0.0	-99.9	0.46	
H072-h072	3.5 psu	24h	636	-0.815	2.889	2.774	2.7	79.9	0.0	6.0	0.0	-99.9	0.45	

Table D-1. Surface water salinity skill assessment at Saturn-07.

Table D-2. Surface water salinity skill assessment at NPBY1.

Station:				NPBY	'1 buoy									
Observed dat	erved data time period from 2/15/2024 to / 7/28/2024													
Data gap is	Data gap is filled using SVD method													
Data are not	t filtered													
VARIABLE	х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONK</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONK</td><td>JKILL</td></n<>	<.5%	CONK	JKILL
	ENARIO: SEM	I-OPEF												
S			39312	29.391										
S			39312	29.028										
S-s	3.5 psu	24h	39312	0.363	0.485	0.322	0.0	100.0	0.0	0.0	0.0	-99.9	0.75	0.63
SCE	NARIO: SEM	I-OPER	ATIONAL H	ORECAST										
H000-h000	3.5 psu	24h	597	0.372	0.496	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.70	
H006-h006	3.5 psu	24h	596	0.374	0.497	0.328	0.0	100.0	0.0	0.0	0.0	-99.9	0.70	
H012-h012	3.5 psu	24h	595	0.374	0.497	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.70	
H018-h018	3.5 psu	24h	594	0.374	0.497	0.328	0.0	100.0	0.0	0.0	0.0	-99.9	0.70	
H024-h024	3.5 psu	24h	593	0.374	0.497	0.328	0.0	100.0	0.0	0.0	0.0	-99.9	0.70	
H030-h030	3.5 psu	24h	592	0.375	0.498	0.328	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	
H036-h036	3.5 psu	24h	591	0.374	0.497	0.328	0.0	100.0	0.0	0.0	0.0	-99.9	0.70	
H042-h042	3.5 psu	24h	590	0.374	0.497	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	
H048-h048	3.5 psu	24h	589	0.375	0.497	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	
H054-h054	3.5 psu	24h	588	0.375	0.497	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	
H060-h060	3.5 psu	24h	587	0.374	0.496	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	
H066-h066	3.5 psu	24h	586	0.373	0.496	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	
H072-h072	3.5 psu	24h	585	0.372	0.495	0.327	0.0	100.0	0.0	0.0	0.0	-99.9	0.69	

Station:				NPBY2	2 buoy									
Observed dat	ta time per	iod fro	m 2/15	/2024 to	/ 8/16/2	.024								
Data gap is filled using SVD method														
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SC	ENARIO: SE	MI-OPER/	ATIONAL N	NOWCAST										
S			43532	29.159										
S			43532	29.076										
S-s	3.5 psu	24h	43532	0.083	0.298	0.286	0.0	100.0	0.0	0.0	0.0	-99.9	0.75	0.83
SC	ENARIO: SEM	II-OPERA	TIONAL F	ORECAST										
H000-h000	3.5 psu	24h	668	0.092	0.303	0.289	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H006-h006	3.5 psu	24h	668	0.093	0.301	0.287	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H012-h012	3.5 psu	24h	668	0.090	0.305	0.292	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H018-h018	3.5 psu	24h	668	0.088	0.304	0.291	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H024-h024	3.5 psu	24h	668	0.096	0.303	0.288	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H030-h030	3.5 psu	24h	668	0.098	0.305	0.289	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H036-h036	3.5 psu	24h	668	0.094	0.307	0.293	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H042-h042	3.5 psu	24h	668	0.095	0.309	0.294	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H048-h048	3.5 psu	24h	668	0.100	0.306	0.290	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H054-h054	3.5 psu	24h	667	0.101	0.307	0.290	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H060-h060	3.5 psu	24h	666	0.105	0.306	0.288	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H066-h066	3.5 psu	24h	665	0.107	0.309	0.290	0.0	100.0	0.0	0.0	0.0	-99.9	0.73	
H072-h072	3.5 psu	24h	664	0.109	0.309	0.289	0.0	100.0	0.0	0.0	0.0	-99.9	0.72	

 Table D-3. Surface water salinity skill assessment at NPBY2.

Table D-4. Surface w	vater salinity skill assessment at ORCA2.
-	

Station:				ORCA	2 buoy									
Observed dat	ta time per	iod fro	m 2/15	/2024 to /	/ 8/16/20)24								
Data gap is	Data gap is filled using SVD method													
Data are not	t filtered													
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SC	CENARIO: SEM	MI-OPER	ATIONAL N	IOWCAST										
S			43527	26.113										
S			43527	27.809										
S-s	3.5 psu	24h	43527	-1.696	2.479	1.808	1.9	88.2	0.0	21.8	0.0	-99.9	0.42	0.42
SC	ENARIO: SEM	II-OPERA	TIONAL F	ORECAST										
H000-h000	3.5 psu	24h	668	-1.809	2.513	1.746	1.9	88.2	0.0	36.0	0.0	-99.9	0.47	
H006-h006	3.5 psu	24h	668	-1.818	2.518	1.743	1.8	88.0	0.0	36.0	0.0	-99.9	0.48	
H012-h012	3.5 psu	24h	668	-1.856	2.570	1.780	2.4	88.5	0.0	36.0	0.0	-99.9	0.47	
H018-h018	3.5 psu	24h	668	-1.863	2.575	1.778	2.2	88.5	0.0	36.0	0.0	-99.9	0.47	
H024-h024	3.5 psu	24h	668	-1.843	2.537	1.745	1.9	88.0	0.0	36.0	0.0	-99.9	0.47	
H030-h030	3.5 psu	24h	668	-1.843	2.528	1.732	1.8	88.0	0.0	36.0	0.0	-99.9	0.46	
H036-h036	3.5 psu	24h	668	-1.835	2.521	1.731	2.1	88.5	0.0	36.0	0.0	-99.9	0.46	
H042-h042	3.5 psu	24h	668	-1.835	2.506	1.709	1.9	88.8	0.0	30.0	0.0	-99.9	0.46	
H048-h048	3.5 psu	24h	668	-1.796	2.442	1.656	1.5	88.2	0.0	24.0	0.0	-99.9	0.46	
H054-h054	3.5 psu	24h	667	-1.785	2.417	1.631	1.3	88.8	0.0	18.0	0.0	-99.9	0.46	
H060-h060	3.5 psu	24h	666	-1.795	2.423	1.629	0.9	88.6	0.0	12.0	0.0	-99.9	0.46	
H066-h066	3.5 psu	24h	665	-1.796	2.433	1.644	1.4	88.4	0.0	12.0	0.0	-99.9	0.46	
H072-h072	3.5 psu	24h	664	-1.782	2.417	1.634	1.5	88.3	0.0	18.0	0.0	-99.9	0.45	

			2											
Station:				ORCA	3 buoy									
Observed dat	ta time per	iod fro	m 2/15	/2024 to /	/ 8/16/20	24								
Data gap is filled using SVD method														
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SC	ENARIO: SE	MI-OPER	ATIONAL N	IOWCAST										
S			43523	28.135										
S			43523	29.877										
S-s	3.5 psu	24h	43523	-1.742	1.972	0.924	0.0	96.2	0.0	0.0	0.0	-99.9	0.21	0.15
SCI	ENARIO: SEM	II-OPERA	TIONAL F	ORECAST										
H000-h000	3.5 psu	24h	668	-1.766	1.994	0.925	0.0	96.1	0.0	0.0	0.0	-99.9	0.20	
H006-h006	3.5 psu	24h	668	-1.752	1.976	0.915	0.0	96.6	0.0	0.0	0.0	-99.9	0.21	
H012-h012	3.5 psu	24h	668	-1.767	1.989	0.914	0.0	96.4	0.0	0.0	0.0	-99.9	0.22	
H018-h018	3.5 psu	24h	668	-1.770	1.995	0.920	0.0	96.0	0.0	0.0	0.0	-99.9	0.21	
H024-h024	3.5 psu	24h	668	-1.766	1.991	0.920	0.0	96.4	0.0	0.0	0.0	-99.9	0.21	
H030-h030	3.5 psu	24h	668	-1.753	1.978	0.916	0.0	96.4	0.0	0.0	0.0	-99.9	0.21	
H036-h036	3.5 psu	24h	668	-1.764	1.997	0.936	0.0	96.1	0.0	0.0	0.0	-99.9	0.21	
H042-h042	3.5 psu	24h	668	-1.764	1.993	0.929	0.0	96.1	0.0	0.0	0.0	-99.9	0.21	
H048-h048	3.5 psu	24h	668	-1.766	1.995	0.928	0.0	96.6	0.0	0.0	0.0	-99.9	0.21	
H054-h054	3.5 psu	24h	667	-1.764	1.992	0.926	0.0	96.6	0.0	0.0	0.0	-99.9	0.21	
H060-h060	3.5 psu	24h	666	-1.760	1.993	0.936	0.0	96.5	0.0	0.0	0.0	-99.9	0.21	
H066-h066	3.5 psu	24h	665	-1.770	2.002	0.936	0.0	95.9	0.0	0.0	0.0	-99.9	0.21	
H072-h072	3.5 psu	24h	664	-1.764	1.993	0.929	0.0	96.1	0.0	0.0	0.0	-99.9	0.21	

Table D-5. Surface water salinity skill assessment at ORCA3.

Station: ORCA4 buoy Observed data time period from 2/15/2024 to / 8/16/2024 Data gap is filled using SVD method Data are not filtered VARIABLE X N IMAX SM RMSE SD NOF CF POF MDNO MDPO WOF CORR SI VARIABLE X N IMAX SM RMSE SD NOF CF POF MDNO MDPO WOF CORR SI SCENARIO: SEMI-OPERATIONAL NOWCAST <
Data gap is filled using SVD method Data are not filtered VARIABLE X N IMAX SM RMSE SD NOF CF POF MDNO MDPO & WOF CORR S CRITERION -
Data are not filtered VARIABLE X N IMAX SM RMSE SD NOF CF POF MDNO MDPO WOF CORR S CRITERION -
VARIABLE CRITERION X N IMAX SM RMSE SD NOF CF POF MDNO MOPO WOF CORR SI SCENARIO: SEMI-OPERATIONAL NOWCAST -
CRITERION - - - - CORR S SCENARIO: SEMI-OPERATIONAL NOWCAST SEMI-OPERATIONAL NOWCAST S
CRITERION -
S 43530 25.917
S 43530 27.622
S-s 3.5 psu 24h 43530 -1.704 2.335 1.595 1.4 92.5 0.0 4.8 0.0 -99.9 0.42
SCENARTO, SEMT-OPERATIONAL FORECAST
SCENARIO, SENT OFERATIONAL FORECAST
H000-h000 3.5 psu 24h 668 -1.770 2.342 1.535 1.2 91.5 0.0 0.0 0.0 -99.9 0.44
H006-h006 3.5 psu 24h 668 -1.773 2.343 1.533 1.2 91.3 0.0 0.0 0.0 -99.9 0.44
H012-h012 3.5 psu 24h 668 -1.802 2.383 1.561 1.3 91.3 0.0 0.0 0.0 -99.9 0.45
H018-h018 3.5 psu 24h 668 -1.812 2.392 1.562 1.3 91.2 0.0 0.0 0.0 -99.9 0.45
H024-h024 3.5 psu 24h 668 -1.782 2.34 1.518 1.0 91.5 0.0 0.0 0.0 -99.9 0.45
H030-h030 3.5 psu 24h 668 -1.792 2.35 1.522 1.0 92.1 0.0 0.0 0.0 -99.9 0.46
H036-h036 3.5 psu 24h 668 -1.821 2.385 1.541 1.2 91.5 0.0 0.0 0.0 -99.9 0.46
H042-h042 3.5 psu 24h 668 -1.823 2.376 1.525 1.2 91.3 0.0 0.0 0.0 -99.9 0.46
H048-h048 3.5 psu 24h 668 -1.789 2.314 1.469 1.2 91.6 0.0 0.0 0.0 -99.9 0.47
H054-h054 3.5 psu 24h 667 -1.790 2.315 1.470 1.2 91.8 0.0 0.0 0.0 -99.9 0.47
H060-h060 3.5 psu 24h 666 -1.819 2.366 1.514 1.4 91.4 0.0 0.0 0.0 -99.9 0.46
H066-h066 3.5 psu 24h 665 -1.831 2.363 1.495 1.4 91.1 0.0 0.0 0.0 -99.9 0.47
H072-h072 3.5 psu 24h 664 -1.803 2.331 1.479 1.1 91.7 0.0 0.0 0.0 -99.9 0.47

APPENDIX E. TIME SERIES OF MODELED SURFACE WATER SALINITY VERSUS OBSERVATIONS

Figure E-1. SSCOFS modeled surface water salinity versus observations at Saturn-07.

Figure E-2. SSCOFS modeled surface water salinity versus observations at NPBY1.

Figure E-3. SSCOFS modeled surface water salinity versus observations at NPBY2.

Figure E-4. SSCOFS modeled surface water salinity versus observations at ORCA2.

Figure E-5. SSCOFS modeled surface water salinity versus observations at ORCA3.

Figure E-6. SSCOFS modeled surface water salinity versus observations at ORCA4.

APPENDIX F. WATER CURRENTS SPEED SKILL ASSESSMENT TABLES

			-				-							
Station:				NDBC An	gles Poir	nt								
Observed dat	ta time per	iod fr	om 2/1	5/2024 to	/ 8/16/2	2024								
Data gap is	filled usi	ng SVD) method											
Data are not	t filtered													
VARIABLE	Х	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CODD	CKTLL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SCI	ENARIO: SEM	II-OPEF	ATIONAL	NOWCAST										
U			32096	0.738										
u			32096	0.465										
U-u	0.26m/s	24h	32096	0.273	0.474	0.364	0.8	45.3	25.5	2.7	6.7	-99.9	0.41	0.57
SCE	NARIO: SEM	I-OPER	ATIONAL H	ORECAST										
U000-u000	0.26m/s	24h	529	0.300	0.476	0.371	1.7	39.9	28.4	0.0	78.0	-99.9	0.42	
U006-u006	0.26m/s	24h	529	0.300	0.480	0.374	1.7	39.3	28.5	0.0	78.0	-99.9	0.42	
U012-u012	0.26m/s	24h	528	0.299	0.479	0.374	1.7	39.0	28.6	0.0	78.0	-99.9	0.41	
U018-u018	0.26m/s	24h	528	0.297	0.479	0.376	1.5	39.2	28.4	0.0	78.0	-99.9	0.41	
U024-u024	0.26m/s	24h	529	0.291	0.473	0.374	1.5	39.9	28.0	0.0	78.0	-99.9	0.42	
U030-u030	0.26m/s	24h	529	0.288	0.472	0.375	1.9	40.3	27.8	0.0	78.0	-99.9	0.42	
U036-u036	0.26m/s	24h	529	0.287	0.472	0.375	1.7	40.1	27.8	0.0	78.0	-99.9	0.42	
U042-u042	0.26m/s	24h	529	0.290	0.474	0.376	1.9	39.7	27.2	0.0	78.0	-99.9	0.42	
U048-u048	0.26m/s	24h	528	0.286	0.473	0.377	1.9	39.6	27.3	0.0	78.0	-99.9	0.42	
U054-u054	0.26m/s	24h	527	0.285	0.471	0.375	1.9	40.4	26.9	0.0	78.0	-99.9	0.42	
U060-u060	0.26m/s	24h	526	0.284	0.471	0.376	1.9	41.1	27.2	0.0	78.0	-99.9	0.42	
U066-u066	0.26m/s	24h	525	0.288	0.473	0.376	2.1	40.4	27.2	0.0	60.0	-99.9	0.42	
U072-u072	0.26m/s	24h	524	0.287	0.472	0.375	1.7	41.2	27.5	0.0	78.0	-99.9	0.42	

Table F-1. Water currents speed skill assessment at NDBC Angeles Point (1.0 m level).

Table F-2. Water current speed skill assessment at Rich Passage (13.7 m level).

		-					. .							
Station:				Rich F	Passage									
Observed dat	ta time per	iod fro	m 2/15	/2024 to /	/ 8/16/20	24								
Data gap is	Data gap is filled using SVD method													
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SC	ENARIO: SE	MI-OPER	ATIONAL N	NOWCAST										
U			43457	0.290										
u			43457	0.439										
U-u	0.26m/s	24h	43457	-0.149	0.215	0.155	2.4	78.4	0.0	2.5	0.0	-99.9	0.84	0.81
SC	ENARIO: SEM	II-OPERA	TIONAL F	ORECAST										
U000-u000	0.26m/s	24h	667	-0.146	0.222	0.167	2.8	76.8	0.0	0.0	0.0	-99.9	0.80	
U006-u006	0.26m/s	24h	667	-0.145	0.222	0.167	3.0	76.8	0.0	0.0	0.0	-99.9	0.80	
U012-u012	0.26m/s	24h	667	-0.145	0.220	0.165	2.8	76.9	0.0	0.0	0.0	-99.9	0.81	
U018-u018	0.26m/s	24h	667	-0.146	0.222	0.167	2.8	76.2	0.0	0.0	0.0	-99.9	0.80	
U024-u024	0.26m/s	24h	667	-0.145	0.218	0.164	2.1	76.9	0.0	0.0	0.0	-99.9	0.81	
U030-u030	0.26m/s	24h	666	-0.145	0.218	0.163	2.3	77.3	0.0	0.0	0.0	-99.9	0.81	
U036-u036	0.26m/s	24h	665	-0.145	0.220	0.165	2.4	75.6	0.0	0.0	0.0	-99.9	0.80	
U042-u042	0.26m/s	24h	664	-0.145	0.220	0.165	2.6	76.5	0.0	0.0	0.0	-99.9	0.80	
U048-u048	0.26m/s	24h	663	-0.144	0.217	0.162	2.1	76.2	0.0	0.0	0.0	-99.9	0.81	
U054-u054	0.26m/s	24h	662	-0.143	0.217	0.163	2.0	76.3	0.0	0.0	0.0	-99.9	0.81	
U060-u060	0.26m/s	24h	661	-0.145	0.217	0.161	1.8	75.9	0.0	0.0	0.0	-99.9	0.81	
U066-u066	0.26m/s	24h	660	-0.143	0.216	0.162	1.7	76.8	0.0	0.0	0.0	-99.9	0.81	
U072-u072	0.26m/s	24h	659	-0.143	0.215	0.161	1.5	77.8	0.0	0.0	0.0	-99.9	0.82	

Station:				Bangor, H										
Observed dat	ta time per	iod fro	m 2/15	/2024 to /	/ 8/16/20	24								
Data gap is	filled usi	ng SVD	method											
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SC	ENARIO: SEM	4I-OPER/	ATIONAL M	NOWCAST										
U			33213	0.137										
u			33213	0.245										
U-u	0.26m/s	24h	33213	-0.109	0.174	0.136	0.4	85.7	0.0	2.6	0.0	-99.9	0.51	0.57
SCI	ENARIO: SEM	I-OPERA	TIONAL F	ORECAST										
U000-u000	0.26m/s	24h	498	-0.115	0.181	0.139	0.6	84.5	0.0	0.0	0.0	-99.9	0.49	
U006-u006	0.26m/s	24h	498	-0.116	0.181	0.139	0.4	84.3	0.0	0.0	0.0	-99.9	0.50	
U012-u012	0.26m/s	24h	498	-0.116	0.181	0.139	0.4	84.1	0.0	0.0	0.0	-99.9	0.50	
U018-u018	0.26m/s	24h	498	-0.115	0.180	0.139	0.6	84.1	0.0	0.0	0.0	-99.9	0.50	
U024-u024	0.26m/s	24h	498	-0.116	0.180	0.138	0.6	84.1	0.0	0.0	0.0	-99.9	0.51	
U030-u030	0.26m/s	24h	497	-0.116	0.181	0.139	0.6	84.1	0.0	0.0	0.0	-99.9	0.50	
U036-u036	0.26m/s	24h	496	-0.116	0.181	0.139	0.6	84.1	0.0	0.0	0.0	-99.9	0.49	
U042-u042	0.26m/s	24h	495	-0.117	0.182	0.140	0.6	83.8	0.0	0.0	0.0	-99.9	0.49	
U048-u048	0.26m/s	24h	494	-0.116	0.181	0.139	0.6	83.4	0.0	0.0	0.0	-99.9	0.49	
U054-u054	0.26m/s	24h	493	-0.116	0.181	0.139	0.6	84.0	0.0	0.0	0.0	-99.9	0.49	
U060-u060	0.26m/s	24h	492	-0.115	0.181	0.139	0.6	83.9	0.0	0.0	0.0	-99.9	0.49	
U066-u066	0.26m/s	24h	491	-0.115	0.180	0.139	0.6	84.1	0.0	0.0	0.0	-99.9	0.49	
U072-u072	0.26m/s	24h	490	-0.113	0.179	0.139	0.6	84.5	0.0	0.0	0.0	-99.9	0.49	

Table F-3. Water currents speed skill assessment at Bangor, Hood Canal (56.0 m level).

Table F-4. Water currents speed skill assessment a	at USGS-Vanc (vertical average).
--	----------------------------------

Station:			USGS-Vanc											
Observed dat	Observed data time period from 2/15/2024 to / 8/16/2024													
Data gap is	Data gap is filled using SVD method													
Data are not														
VARIABLE	х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CONK</td><td>JKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CONK</td><td>JKILL</td></n<>	<.5%	CONK	JKILL
SC	ENARIO: SEM	1I-OPER/	ATIONAL N	NOWCAST										
U			43532	0.744										
u			43532	0.644										
U-u	0.26m/s	24h	43532	0.100	0.117	0.060	0.0	100.0	0.0	0.0	0.0	-99.9	0.96	0.87
SCI	ENARIO: SEM	II-OPERA	TIONAL F	ORECAST										
U000-u000	0.26m/s	24h	668	668	668	668	668	668	668	668	668	-99.9	0.96	
U006-u006	0.26m/s	24h	668	0.098	0.122	0.072	0.0	100.0	0.0	0.0	0.0	-99.9	0.91	
U012-u012	0.26m/s	24h	668	0.091	0.124	0.085	0.0	99.3	0.0	0.0	0.0	-99.9	0.91	
U018-u018	0.26m/s	24h	668	0.089	0.119	0.079	0.0	99.1	0.0	0.0	0.0	-99.9	0.88	
U024-u024	0.26m/s	24h	668	0.083	0.122	0.089	0.0	99.1	0.0	0.0	0.0	-99.9	0.87	
U030-u030	0.26m/s	24h	668	0.084	0.122	0.089	0.0	98.7	0.0	0.0	0.0	-99.9	0.86	
U036-u036	0.26m/s	24h	667	0.083	0.123	0.091	0.0	98.5	0.0	0.0	0.0	-99.9	0.85	
U042-u042	0.26m/s	24h	666	0.083	0.123	0.090	0.0	98.5	0.0	0.0	0.0	-99.9	0.85	
U048-u048	0.26m/s	24h	665	0.085	0.125	0.091	0.0	98.6	0.0	0.0	0.0	-99.9	0.84	
U054-u054	0.26m/s	24h	664	0.091	0.129	0.092	0.0	97.3	0.0	0.0	0.0	-99.9	0.84	
U060-u060	0.26m/s	24h	663	0.099	0.133	0.090	0.0	96.5	0.0	0.0	0.0	-99.9	0.84	
U066-u066	0.26m/s	24h	662	0.105	0.139	0.091	0.0	95.2	0.0	0.0	0.0	-99.9	0.84	
U072-u072	0.26m/s	24h	661	0.109	0.144	0.094	0.0	94.4	0.0	0.0	0.0	-99.9	0.83	

APPENDIX G. WATER CURRENTS DIRECTION SKILL ASSESSMENT TABLES

											,			
Station:				NDBC Ang	les Poin [.]	t								
Observed dat	ta time per	iod fro	m 2/15	/2024 to /	8/16/20	24								
Data gap is	filled usi	ng SVD	method											
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
SC	ENARIO: SE	MI-OPER/	ATIONAL N	IOWCAST										
D			32096	209.9										
d			32096	183.9										
D-d	22.5 dg	24h	32096	6.4	50.3	49.9	7.7	59.5	13.7	2.8	3.7	-99.9	0.50	0.71
SC	ENARIO: SEM	II-OPERA	TIONAL F	ORECAST										
D000-d000	22.5 dg	24h	529	2.1	51.0	51.0	24.0	35.2	40.5	12.0	42.0	-99.9	0.48	
D006-d006	22.5 dg	24h	529	2.3	50.4	50.4	24.4	35.5	40.1	12.0	42.0	-99.9	0.48	
D012-d012	22.5 dg	24h	528	2.5	50.6	50.5	23.9	35.6	40.5	12.0	42.0	-99.9	0.49	
D018-d018	22.5 dg	24h	528	2.6	50.5	50.5	23.7	35.6	40.5	12.0	42.0	-99.9	0.48	
D024-d024	22.5 dg	24h	529	2.6	50.4	50.4	23.8	35.2	40.8	12.0	42.0	-99.9	0.48	
D030-d030	22.5 dg	24h	529	3.1	50.8	50.7	23.6	35.7	40.6	12.0	42.0	-99.9	0.47	
D036-d036	22.5 dg	24h	529	2.5	49.7	49.7	23.4	36.1	40.3	12.0	42.0	-99.9	0.47	
D042-d042	22.5 dg	24h	529	2.6	49.7	49.7	23.4	35.7	40.6	12.0	42.0	-99.9	0.47	
D048-d048	22.5 dg	24h	528	1.7	50.3	50.3	23.5	35.6	40.9	12.0	42.0	-99.9	0.46	
D054-d054	22.5 dg	24h	527	1.6	50.5	50.5	23.5	35.3	41.0	12.0	42.0	-99.9	0.48	
D060-d060	22.5 dg	24h	526	2.5	49.9	49.9	23.6	35.0	40.9	12.0	42.0	-99.9	0.49	
D066-d066	22.5 dg	24h	525	2.6	50.0	49.9	23.0	35.8	40.8	12.0	42.0	-99.9	0.49	
D072-d072	22.5 dg	24h	524	3.1	48.8	48.7	22.7	36.3	40.8	12.0	42.0	-99.9	0.47	

Table G-1. Water currents direction skill assessment at NDBC Angles Point (1.0 m level).

Table G-2. Water currents direction skill assessment at Rich Passage (13.7 m level).

Station:				Rich F	Passage									
	Observed data time period from 2/15/2024 to / 8/16/2024													
Data gap is filled using SVD method														
	Data are not filtered													
VARIABLE	X	N	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF		
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SC	ENARIO: SE	MI-OPER	ATIONAL N	NOWCAST										
D			43457	189.9										
d			43457	195.1										
D-d	22.5 dg	24h	43457	-0.906	10.2	10.1	0.2	93.8	0.0	0.5	0.0	-99.9	0.80	0.90
SC	ENARIO: SEM	I-OPERA	TIONAL F	ORECAST										
D000-d000	22.5 dg	24h	667	-0.6	12.1	12.1	24.6	52.6	22.2	66.0	54.0	-99.9	0.82	
D006-d006	22.5 dg	24h	667	-0.5	12.2	12.2	23.7	52.0	23.4	66.0	54.0	-99.9	0.82	
D012-d012	22.5 dg	24h	667	-0.8	12.0	12.0	25.0	52.0	22.3	66.0	54.0	-99.9	0.83	
D018-d018	22.5 dg	24h	667	-0.8	11.9	11.9	25.0	52.3	22.3	66.0	54.0	-99.9	0.81	
D024-d024	22.5 dg	24h	667	-0.8	12.1	12.1	25.9	51.7	22.0	66.0	54.0	-99.9	0.81	
D030-d030	22.5 dg	24h	666	-0.8	12.5	12.5	24.6	52.0	22.1	66.0	54.0	-99.9	0.82	
D036-d036	22.5 dg	24h	665	-0.8	12.0	12.0	24.5	52.3	22.4	66.0	54.0	-99.9	0.81	
D042-d042	22.5 dg	24h	664	-0.7	12.3	12.3	24.5	52.3	22.7	60.0	54.0	-99.9	0.81	
D048-d048	22.5 dg	24h	663	-0.7	12.1	12.1	24.6	52.9	22.2	54.0	54.0	-99.9	0.82	
D054-d054	22.5 dg	24h	662	-0.9	11.5	11.5	24.0	53.9	21.6	48.0	30.0	-99.9	0.83	
D060-d060	22.5 dg	24h	661	-0.9	11.7	11.7	24.7	53.9	20.4	42.0	30.0	-99.9	0.81	
D066-d066	22.5 dg	24h	660	-0.8	11.8	11.7	23.6	53.0	22.3	36.0	30.0	-99.9	0.83	
D072-d072	22.5 dg	24h	659	-0.9	11.8	11.8	24.1	54.5	21.1	30.0	30.0	-99.9	0.82	

r						-								
Station:				Bangor, H										
Observed data time period from 2/15/2024 to / 8/16/2024														
Data gap is filled using SVD method														
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORR</td><td>SKILL</td></n<>	<.5%	CORR	SKILL
SC	ENARIO: SEM	4I-OPER/	ATIONAL M	IOWCAST										
D			33213	134.2										
d			33213	109.0										
D-d	22.5 dg	24h	33213	-0.6	3.6	3.6	0.0	99.3	0.0	0.8	0.0	-99.9	0.23	0.57
SCE	ENARIO: SEM	I-OPERA	TIONAL F	ORECAST										
D000-d000	22.5 dg	24h	498	-0.7	3.4	3.4	6.4	93.4	0.2	6.0	0.0	-99.9	0.20	
D006-d006	22.5 dg	24h	498	-0.8	3.6	3.5	6.8	93.0	0.2	6.0	0.0	-99.9	0.19	
D012-d012	22.5 dg	24h	498	-0.7	3.4	3.3	6.2	93.6	0.2	6.0	0.0	-99.9	0.21	
D018-d018	22.5 dg	24h	498	-0.8	3.6	3.5	6.6	93.2	0.2	6.0	0.0	-99.9	0.20	
D024-d024	22.5 dg	24h	498	-0.8	3.8	3.7	6.8	93.0	0.2	6.0	0.0	-99.9	0.19	
D030-d030	22.5 dg	24h	497	-0.8	3.7	3.6	6.2	93.6	0.2	6.0	0.0	-99.9	0.18	
D036-d036	22.5 dg	24h	496	-0.8	3.8	3.7	6.5	93.3	0.2	6.0	0.0	-99.9	0.18	
D042-d042	22.5 dg	24h	495	-0.8	3.8	3.7	6.9	92.9	0.2	6.0	0.0	-99.9	0.18	
D048-d048	22.5 dg	24h	494	-0.8	3.7	3.7	6.5	93.3	0.2	6.0	0.0	-99.9	0.18	
D054-d054	22.5 dg	24h	493	-0.8	3.9	3.8	7.1	92.7	0.2	6.0	0.0	-99.9	0.20	
D060-d060	22.5 dg	24h	492	-0.8	3.7	3.6	6.5	93.3	0.2	6.0	0.0	-99.9	0.17	
D066-d066	22.5 dg	24h	491	-0.8	3.7	3.7	6.5	93.3	0.2	6.0	0.0	-99.9	0.19	
D072-d072	22.5 dg	24h	490	-0.8	3.9	3.8	6.7	93.1	0.2	6.0	0.0	-99.9	0.19	

Table G-3. Water currents direction skill assessment at Bangor, Hood Canal (56.0 m level).

Station:			USGS-Vanc											
Observed dat	Observed data time period from 2/15/2024 to / 8/16/2024													
Data gap is filled using SVD method														
Data are not	t filtered													
VARIABLE	Х	Ν	IMAX	SM	RMSE	SD	NOF	CF	POF	MDNO	MDPO	WOF	CORR	SKILL
CRITERION	-	-	-	-	-	-	<1%	>90%	<1%	<n< td=""><td><n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<></td></n<>	<n< td=""><td><.5%</td><td>CORK</td><td>SKILL</td></n<>	<.5%	CORK	SKILL
S	CENARIO: SEM	I-OPERA	TIONAL N	OWCAST										
D			43532	306.7										
d			43532	307.0										
D-d	22.5 dg	24h	43532	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	1.00
SC	ENARIO: SEM	E-OPERA	TIONAL FO	DRECAST										
D000-d000	22.5 dg	24h	668	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D006-d006	22.5 dg	24h	668	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D012-d012	22.5 dg	24h	668	-0.3	0.3	0.1	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D018-d018	22.5 dg	24h	668	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D024-d024	22.5 dg	24h	668	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D030-d030	22.5 dg	24h	668	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D036-d036	22.5 dg	24h	667	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D042-d042	22.5 dg	24h	666	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D048-d048	22.5 dg	24h	665	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D054-d054	22.5 dg	24h	664	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D060-d060	22.5 dg	24h	663	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D066-d066	22.5 dg	24h	662	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	
D072-d072	22.5 dg	24h	661	-0.3	0.3	0.0	0.0	100.0	0.0	0.0	0.0	-99.9	1.00	