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PREFACE

This volume was designed primarily as a working manual for use
in the United States Coast and Geodetie Survey and deseribes the
procedure used in this office for the harmonie analysis and predietion
of tides and tdal currents, It 18 based lavgely upon the works ol
St Williame Thomson, Prof. George H. Darwin, and Dr. Rollin A,
Harris.  In recent vears theve also has been considerable work done
on this subject by Dr. A, T. Doodson, of the Tidal Institute of the
University of Liverpool.

The first edition of the present work was published in 1924, In
this revised edition there has been a rearrangement of the material in
the first part of the volume to bring out more clearly the development
of the tidal forces.  Tables of astronomical data and other tables to
facilitate the computations have been retained with a fow vevisions
and additions and there has been added a list of symbols used in
the work.

The collection of tidal harmonic constants for the world that
appeared in the carlier edition has been omitted altogether because
the work of maintaining such a list has now been taken over by the
Ipternational Hydrographie Burcau at Monaco. These constants
are now published 1 International Hydrographic Burcau Speeial
Publication No. 26, which consists of a collection of loose sheets which
permit the addition of new constants as they become available,

special acknowledgment is due Walter B. Zerbe, associate mathe-
matician of the Division of Tides and Currents, who reviewed the
manuscript of this edition and offered many valuable suggestions.

I
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MANUAL OF HARMONIC ANALYSIS
AND PREDICTION OF TIDES

INTRODUCTION
HISTORICAL STATEMENT

1. Sir William Thomson (Lord Kelvin) devised the method of
reduction of tides by harmonic analysis about the yvear 1867. The
principle upon which the system is based—vhich is that any peri-
odic motion or oscillation can always be resolved into the sum of a
series of simple harmonic motions—is said to have been discovered
by Eudoxas as early as 356 B. C., when he explained the apparently
irregular motions of the planets by combinations of uniform. cireu-
lar motions.! In the carly part of the nineteenth century Laplace
recognized the existence of partial tides that might be expressed by
the cosine of an angle increasing uniformly with the time, and also
applied the essential principles of the harmonic analysis to the reduc-
tion of high and low waters. Dr. Thomas Young suggested the
importance of observing and analyzing the entire tidal curve rather
than the high and low waters only. Sir George B. Airy also had an
important part in laying the foundation for the harmonic analysis
of the tides. To Sir William Thomson, however, we may give the
credit for having placed the analysis on a practical basis.

2. In 1867 the British Association for the Advancement of Science
appointed a committee for the purpose of promoting the extension,
improvement, and harmonic analysis of tidal obscrvations. The
report on the subject was prepared by Siv William Thomson and was
published in the Report of the British Association for the Advance-
ment of Science in 1868.  Supplementary reports were made from,
time to time by the tidal committee and published in subsequent
reports of the British association. A few years later a committe,
consisting of Profs. G. H. Darwin and J. C'. Adams, drew up a very
full report on the subject, which was published in the Report of the
British Association for the Advancement of Science in 1883,

3. Among the American mathematicians who have had an important
part in the development of this subject may be named Prof. William
Ferrel and Dr. Rollin A. Harris, both of whom were associated with
the U. 5. Coast and Geodotic Survey. The Tidal Researches, by
Professor Ferrel, was published in 1874, and additional articles on
the harmonic analysis by the same author appeared from time to
time in the annual reports of the Superintendent of the Coast and
Geodetic Survey. The best known work of Doctor Harris is his
Manual of Tides, which was published in several parts as appendices
to the annual reports of the Superintendent of the Coast and Geo-
detic Survey. The subject of the harmonic analysis was treated
principally in Part IT of the Manual which appeared in 1897,

1 Nautical Science, p. 279, by Charles Lane Poor.



2 U. 8. COAST AND GEODETIC SURVEY
GENERAL EXPLANATION OF TIDAL MOVEMENT

4, That the tidal movement results from the gravitational attraction
of the moon and sun acting upon the rotating earth is now a well-
established scientific fact. The movement includes both the vertical
rise and fall of the tide and the horizontal flow of the tidal currents.
It will be shown later that the tide-producing force due to this attrac-
tion, when taken in connection with the attraction between the par-
ticles of matter which constitute the earth, can be expressed by mathe-
matical formulas based upon the well-known laws of gravitation.

5. Although the acting forces are well understood, the resultant
tidal movement is exceedingly complicated because of the irregular
distribution of land and water on the earth and the retarding effects
of friction and inertia. Contrary to the popular idea of a progressive
tidal wave following the moon around the earth, the basic tidal
movement asevidenced by observations at numerous points along the
shores of the oceans consists of a number of oscillating areas, the move-
ment being somewhat similar to that in a pan of water that has been
tilted. Such oscillations are technically known as stationary waves.
The complex nature of the movement can be appreciated when con-
sideration is given to the fact that such stationary waves may overlap
or be superimposed upon each other and may be accompanied by a
progressive wave movement.

6. Any basin of water has its natural free period of oscillation de-
pending upon its size and depth. The usual formula for the period
of oscillation in a rectangular tank of uniform depth is 2L/+4/gd, in
which L is the length and d the depth of the tank and ¢ is the accelera-
tion of gravity. When a disturbing force is applied periodically at
intervals corresponding to the free period of a body of water, it tends
to build up an oscillation of much greater magnitude than would be
possible with a single application of the force. The major tidal
3scillations have periods approximating the half and the whole lunar

Y HARMONIC TREATMENT OF TIDAL DATA

7. The harmonic analysis of tides is based upon an assumption that
the rise and fall of the tide in any locality can be expressed mathe-
matically by the sum of a series of harmonic terms having certain
relations to astronomical conditions. A simple harmonic function is
a quantity that varies as the cosine of an angle that increases uniformly
with time. In the equation y==A4 cos at, ¥ is an harmonic function of
the angle af in which @ is a constant and ¢ represents time as measured
from some initial epoch. The general equation for the height () of
the tide at any time (f) may be written

h=H,+A cos (at+a)-+B cos (bt+B)+C cos (ct-+v)+ ete. (1)

in which &, is the height of the mean water level above the datum
used. Other symbols are explained in the following paragraph.

8. Each cosine term in equation (1) is known as a constituent or
component tide. The coefficients 4, B, C, etc. are the amplitudes of
the constituents and are derived from observed tidal data in each
locality. 'The expression in parentheses is a uniformly-varying angle
and its value at any time is called its phase. Any constituent term
has its maximum positive value when the phase of the angle is zero
and a maximum negative value when the phase equals 180°, and the
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term becomes zero when the phase equals 90° or 270°.  The coefficient,
ol ¢ represents the rate of change in the phase and is called the speed
of the constituent and is venally expressed in degrees per hour. The
time required for a constituent to pass through a complete cycle is
known as its period and may be obtained by dividing 360° by its
speed.  The periods and corresponding speeds of the constituents are
derived from astronomical data and are independent of the locality
of the tide station. The symbols a, 8, v, ete. refer to the initial phases
of the constituent angles at the time when ¢ equals zero. The initial
phases depend upon locality as well as the instant from which the
time is reckoned and their values are derived from tidal observations.
Harmonic analysis as applied to tides is the process by which the
observed tidal data at any place are separated into a number of
harmonic constituents. The quantities sought are known as harmonic
constants and consist of the amplitudes and certain phase relations
which will be more fully explained later. Harmonic prediction is
accomplished by reuniting the elementary constituents in accordance
with astronomical relations prevailing at the time for which the
predictions are being made.

ASTRONOMICAL DATA

9. In tidal work the only celestial bodies that need be considered
are the moon and sun.  Although every other celestial body whose
gravitational influence reaches the earth creates a theoretical tide-
producing force, the greater distance or smaller size of such body
renders negligible any effect of this force upon the tides of the carth.
In deriving mathematical expressions for the tide-producing forces of
the moon and sun, the prineipal factors to be taken into consideration
are the rotation of the carth, the revolution of the moon around the
earth, the revolution of the earth around the sun, the inclination of
the moon’s orbit to the earth’s equator, and the obliquity of the
ecliptic. Numerical values pertaining to these factors will be found
in table 1.

10. The carth rotates on its axis once each day. There are, how-
ever, several kinds of days—the sidereal day, the solar day, the lunar
day, and the constituent day—depending upon the object used as a
reference for the rotation.  The sidereal day is defined by astronomers
as the time rvequired for the rotation of the carth with respect to the
vernal equinox.  Because of the precession of the equinox, this day
differs slightly from the time of rotation with respect to a fixed star,
the difference being less than the hundredth part of a sccond. The
solar day and lunar day ave respectively the times required for rotation
with respeet to the sun and moon. Since the motions of the carth
and moon in their orbits are not uniform, the solar and lunar days
vary a little in Tength and their average or mean values are taken as
standard units of time. A constituent day is the time of the rotation
of the carth with respeet to a fictitious satellite representing one of
the periodie clements in the tidal forces. Tt approximates in length
the lunar or solar day and corresponds to the period of a diurnal
constituent or twice the period of a semidiurnal constituent.

11. A calendar day is & mean solar day commeneing at midnight.
Such a calendar day is known also as a eivil day to distinguish it from
the astronomical day which commences at noon of the same date.
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Prior to the year 1925, the astronomical day was in general use by
astronomers for the recording of astronomical data, but beginning
with the Hphemeris and Nautical Almanac published in 1925 the
civil day has been adopted for the caleulations. Fach day of what-
ever kind may be divided into 24 equal parts known as hours which
are qualified by the name of the kind of day of which they ave a part,
as sidereal hour, solar hour, lunar hour, or constituent hour,

12. The moon revolves around the carth in an clliptical orbit.  Al-
though the average eccentricity of this orbit remains approximately
constant for long periods of time, there are a number of perturbations
in the moon’s motion due, primarily, to the attractive force of the sun.
Besides the revolution of the line of apsides and the regression of the
nodes which take place more or less slowly, the principal inequalities
in the moon’s motion which affect the tides arve the evection and
iation. The evection depends upon the alternate increase and
ase of the eccentricity of the moon’s orbit, which is always &
maximum when the sun is passing the moon’s line of apsides, and a
minimum when the sun is at right angles to it. The variation ine-
quality is due mainly to the tangential component of the disturbing
force.” The period of the revolution of the moon around the earth
is called a month. The month is designated as sidereal, tropical,
anomalistic, nodical, or synodical, according to whether the revolution
is relative to a fixed star, the vernal equinox, the perigee, the ascend-
ing node, or the sun.  The calendar month is & rough approximation
to the synodical month,

13. 1i is customary to refer to the revolufion of the earth around
the sun, although it may be more accurately stated that they both
revolve around their common center of gravity; but if we imagine
the earth as fixed, the sun will describe an apparent path around the
earth which is the same in size and form as the orbit of the earth
around the sun, and the effect upon the tides would be the same.
This orbit is an ellipse with an eccentricity that changes so slowly
that it may be considered as practically constant. The period of
the revolution of the earth around the sun is a year, but there are
several kinds of years. The sidereal year is a revolution with respect
to o fixed star, the tropical year is a vevolution with respect to the
vernal equinox, the eclipse year is a revolution with respeet to the
moon’s ascending node, and the anomalistic year is a revolution with
respect to the solar perigee.

14. A calendar year consists of an integral number of mean solar
days and may be a common year of 365 days or a leap year of 366 days,
these years being selected according to the calendars described below
so that the average length will agree as nearly as practicable with
the length of the tropical year which fixes the periodic changes in the
seasons. The average length of the calendar year by the Julian
calendar is exactly 365.25 days and by the Gregorian calendar 365.2425
days and these may be designated respectively as a Julian year and a
Gregorian year.

15. The two principal kinds of calendars in use by most of the
civilized world since the beginning of the C!

de

: hristian era are the Julian
and the Gregorian calendars, the latter being the modern calendar in
which the dates are sometimes referred to as “new style” to dis-
tinguish them from the dates of the older calendars. Prior to the
year 45 B. C. there was more or less confusion in the calendars, inter-
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calations of months and days being arbitrarily made by the priesthood
and magistrates to bring the calendar into accord with the scasons
and for other purposes,

16. The Julian calendar received its name from Julius Caesar, who
introduced it in the year 45 B. C. This calendar provided that the
common year should consist of 365 days and every fourth yvear ol 366
days, each year to begin on January 1. As proposed by Julius Ceesar,
the 12 11101\1&1&% beginning with January were to be alternately 31 days
and 30 days in length with the exception that February should have
only 29 days in the common years. When Augustus succeeded
Julius Casar a few years later, he slightly modified this arrangement
by transferring one day from February to the month of Sextilis, or
August as it was then renamed, and also transferred the 31st day of
September and November to October and December to avoid having
three 31-day months in suceession,

7. The Gregorian calendar received its name from Pope Gregory,
who introduced 1t in the year 1582, 1t was immediately adopted by
the Catholic countries but was not accepted by England until 1752
This calendar differs from the Julian calendar in having the century
years not exactly divisible by 400 to consist of only 365 days, while
in the Julian calendar every century year as well as every other year
divisible by 4 is taken as a'leap year with &6() (lays For dates before
Christ the vear number must be diminished by 1 before testing its
divisibility by 4 or 400 since the year 1 B. C. (‘ouosp(md% to the year
) A. D, The Gregorian calendar will gain on the Julian calendar
three days in each 400 years. When originally adopted, in order to
adjust the Gregorian calendar so that the vernal equinox should
fall upon March 21, as it had at the time of the Council of Nice in
325 A. D, 10 <'la,y% were (hopp(‘d and it was ordered that the day
following October 4, 1582 of the Julian calendar should be designated
as October 15, j”%‘) of the (,uegnrmn calendar. This difference of
10 days between the dates of the two calendars continued until 1700,
which was a leap year according to the Julian calendar and a com-
mon year by the Gregorian calendar. The difference between the
two then became 11 days and in 1800 was increased to 12 days.
Since 1900 the difference has been 13 days and will remain the same
until the year 2100,

18, Datox of the Christian era prior to October 4, 1582, will, in
general, conform to the Julian calendar. Since that timo | hoth al-
endars have been used. The Gregorian calendar was a(loptod in
Fagland by an act of Parliament passed in 1751, which provided
that the day following September 2, 1752, should be called %Optombor

1752, and also that the year 1752 and subsequent years should
commence on the st day of January. Previous to this the legal
year in England commenced on March 25.  Except for this arbitrary
beginning of the year, the old English calendar was the same as the
Julian calendar. ~ When Alaska was purchased from Russia by the
United States, its calendar was altered by 11 days, one of these days
being necessary because of the difference between the Asiatic and
American dates when compared across the one hundred and eightieth
meridian.  Dates in the tables at the back of this volume refer to
tho }tr,'eﬂ'ori.:m calendar.

. The three great circles formed by the intmeoctiom of the planes

¢ g
of L)(‘ carth’s equator, the ecliptic, and the moon’s orbit with the
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celestial sphere arve represented in figure 1. These circles intersect in
six points, three of them being marked by symbols in the figure,
namely, the vernal equinox T at the intersection of the celestial equator
and ecliptic, the ascending lunar node § at the intersection f the
ecliptic and the projection of the moon’s orbit, and the lunar inter-
section A at the intersection of the celestial equator and the projection
of the moon’s orbit. For brevity these three points are sometimes
called respectively “the equinox,”” “ the node,” and “the intersection.”
The vernal equinox, although subject to a slow westward motion of
about 50"’ per year, is generally taken as a fixed point of reference for
the motion of other parts of the solar system. The moon’s node has a
westward motion of about 19° a year, which is sufficient to carry it
entirely around a great circle in a little less than 19 years.

20. The angle  between the ecliptic and the celestial equator is
known as the obliquity of the ecliptic and has a nearly constant
value of 23)4°. The angle ¢ between the ecliptic and the plane
of the moon’s orbit is also constant with a value of about 5°.

FIGURE 1.

The angle I which measures the inclination of the moon’s orbit to the
celestial equator might appropriately be called the obliquity of the
moon’s orbit. Its magnitude changes with the position of the moon’s
node. When the moon’s ascending node coincides with the vernal
equinox, the angle { equals the sum of w and 7, or about 2844°, and when
the descending node coincides with the vernal equinox, the angle
Tequals the difference between w and 4, or about 18%°. This variation
in the obliquity of the moon’s orbit with its period of approximately
18.6 years introduces an important inequality in the tidal movement
which must be taken into account.

21. In the celestial sphere the terms “latitude” and “longitude”
apply especially to measurements referred to the ecliptic and vernal
equinox, but the terms may with propriety also be applied to meas-
urements referred to other great circles and origins, provided they
are sufficiently well defined to prevent any ambiguity. ~ For example,
we may say “longitude in the moon’s orbit measured from the moon’s
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node.”  Celestial longitude is always understood to be measured
toward the east entirely around the circle. Longitude in the celestial
equator reckoned from the vernal equinox is called right ascension,
and the angular distance north or south of the celestial equator is
called declination.

22. The true longitude of any point referred to any great circle in
the celestial sphere may be defined as the arc of that circle intercepted
between the accepbed origin and the projection of the point on the
cirele, the measurement being always eastward from the origin to the
projection of the point. The true longitude of any point will generally
be different when referred to difterent circles, although reckoned from
a common origin; and the longitude of a body moving “at a uniform rate
of speed in one great cirele will not have a uniform rate of change when
referred to another great cirele.

23, The mean longltudo of & body moving in a closed orbit and
referred to any great circle may be defined as the longitude that would
be attained by a point moving uniformly in the cir cle of refor ence at
the same average angular velocity as that of the body and with the
initial position of the point so taken that its mean longitude would be
the same as the true longitude of the body at a certain selectod position
of that body in its orbit. With a common initial point, the mean
longitude of a moving body will be the same in whatever circle it may
be reckoned. LOD{"I'LLl(l(‘ i the ecliptic and in the celestial equator
are usually reckoned from the vernal equinox T, which is common to
both circles. In order to have an equivalent origin in the moon’s
orbit, we may lay off an are @ T’ (fig. 1) in the moon’s orbit equal
to & T in the ecliptic and for convenience call the point 7’ the
referred equinox. The mean longitude of any body, if reckoned from
either the equinox or the referred equinox, will be the same in any of
the three orbits represented.  This will, of course, not be the case for
the true longitude.

24. Let us now examine more closely the spherical triangle & T A
m figure 1. The angles w and ¢ are very nearly constant for long
pumd% of time and have already been explained. Jhc side & 7,
usually designated by &V, is the longitude of the moon’s node and is
undergoing a constant and practically uniform change due to the
regression of the moon’s nodes. This westward movement of the
node, by which it is carried completely around the ecliptic in a
period of approximately 18.6 vears, causes a constant change in the
form of the triangle, the elements of which are of considerable im-
portance in the present discussion, The value of the angle I, the
supplement of the angle & A 7T, has an important effect upon both
the range and time of the tide, which will be noted later. The side
A 7, designated by », is the right ascension or longitude in the
celestial equator of the intersection 4. The arc designated by
£is oqual to the side & T—side & A and is the longitude in the
moon’s orbit of the intersecsion A. Since the angles 7 and o are
agssumed to be constant, the values of 7, v, and & will depend directly
upon N, the lonfntudo of the moon’s node b, and may be readily
obtained by the ordmzuy solution of the spherical triangle £ T 4.
Table 6 give the values of I, », and & for each degree of N. In the
computation of this table the value of w for the beginning of the
twentieth century was used. However, the secular change in the
obliquity of the ecliptic is so slow that a difference of a century in
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the epoch taken as the basis of the computation would have resulted
in differences of less than 0.02 of a degree in the tabular values.
The table may therefore be used without material ervor for reductions
pertaining to any modern time,

25. Looking again at ficure 1, it will be noted that when the
longitude of the moon’s node is zero the value of the inclination J will
(‘qu(d he sum of w and 2 and will be ab ibs maximum. In this position
the northern portion of the moon s orbit will be north of the oohp(m
When the longitude of the moon’s node is 180°, the moon’s orbit
will be between the Equator and ecliptic, and the angle T will be
equal to angle w—angle ©. The angle 7 will be always positive and
will vary from w—1 to w-1.  When the longitude of the moon’s node
equals zero or 180°, 'h(\ values of v and £ will cach be zero, For all
positions of the moon’s node north of the Equator as its longitude
changes from 180 to 0°, » and ¢ will have posmvo valu(‘s, as indi-
eated in the figure, these aves being considered as positive when
rockoned eastward from T oand T, (‘,spectively. For all positions of
the node south of the Lquator, as the longitude changes from 360
to 180°, » and & will cach be negative, since the intersection A will
then lzw to the westward of 7 and T/

DEGREE OF APPROXIMATION

26. The problem of finding expressions for tidal forces and the
equilibrium height of the tide in terms of time and place does not
admit of a strict solution, but approximate cxpressions can be ob-
tained which may be carried to as high an order of precision as desired.
In ordinary nwmerical computations exaet results are seldom ob-
tained, the degree of precision depending upon the nurber of decimal
places “used in the computations, which, in turn, will be determined
largely by the magnitude of the quanbxby sol,xght. In general, the
degree of approximation to the value of any quantity expressed
nuwmerically will be determined by the number of significant figures
used.  With a quantity represented by a single significant figure,
the error may be as great as 334 percent of the quantity itself, while
the use of two significant figures will reduce the maximum error to
less than 5 percent of the true value of the quantity. The large
possible error in the first case renders it of little value, but in the
latter casc the approximation is sufficiently close to be useful when
only rough results are necessary.  The distance of the sun from the
earth is popularly expressed by two significant figures as 93,000,000
miles.

27. With three or four significant figures fairly satisfactory approxi-
mations may be 1(p1(wonto<l, and with a greater number very precise
results may be expressed. For theorobics al purposcs the highest at-
tainable precision is desirable, but for practical purposes, because
of the increase in the labor without a corresponding increase in ubil-
ity, it will be usually found advantageous to limit the degree of
precision in accordance with the preve <ulmo conditions.

28. Irequently a quantity that is to be wsed as a factor in an expres-
sion may be expanded into a series of terms. If the approximate
value of such a series is near unity, terms which Would aﬂuct. the
third decimal place, if expressed numerically, should usually be re-
tained.  The retention of the smaller terms will depend to some ex-
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tent up(m the labor involved since their rejection would not seriously
aff (\(L the final vesults.

29. The formulas for the moon’s true longit ud( and parallax on
pdov», 19-20 are said to be given to the second order of appm\un(ltmn
a fraction of the first ovder bouw considered as one having an approxi-
mate value of 1/20 or 0.05, a fraction of the second ordor having an
approximate value of (0.05)" or 0.0025, a {1 action of third order havmw
an approximate value of (0.05)% or 0.000125, cte.  As these formulas
provide important factors in the development of the equations repre-
senting the tide-producing forces, they determine to a large extent
the dogrm‘% of precision to be expected in the results,



DEVELOPMENT OF TIDE.PRODUCING FORCE

FUNDAMENTAL FORMULAS

30. The tide-producing forces exerted by the moon and sun are
similar in their action and mathematical expressions obtained for one
may therefore by proper substitutions be adapted to the other. DBe-
cause of the greater importance of the moon in its tide-producing
effects, the following development will apply primarily to that body,
the necessary changes to represent the solar tides being alterwards
indicated.

31. The tide-producing force of the moon is that portion of its
gravitational attraction which is effective in changing the water level
on the earth’s surface. This effective force is the difference between
the attraction for the carth as a whole and the attraction for the differ-
ent particles which constitute the yielding part of the carth’s sur-
face; or, if the entire carth were considered to be a plastic mass, the
tide-producing force at any point within the mass would be the force
that tended to change the position of a particle at that point relative
to a particle at the center of the carth. That part of the earth’s
surface which is direetly under the moon is nearer to that body than
is the center of the earth and is therefore more strongly attracted
since the force of gravity varies inversely as the square of the dis-
tance. Tor the same reason the center of the carth is more strongly
attracted by the moon than is that part of the earth’s surface which
is turned away from the moon.

32, The tide-producing force, being the difference between the
atiraction for particles situated relatively near together, is small com-
pared with the attraction itself. Tt may be interesting to note that,
although the sun’s attraction on the carth is nearly 200 times as great
as that of the moon, its tide-producing force is less than one-half
that of the moon. If the forces acting upon each particle of the
carth were cequal and parallel, no matter how great those forces
might be, there would be no tendeney to change the relative posi-
tions of those particles, and consequently there would be no tide-~
producing foree.

33. The tide-producing force may be graphically represented as in
figure 2.

T.et O=the center of the carth,
I==the center of the moon,
P=1any point within or on the surface of the earth.

Then OC will represent the direction of the attractive force of the
moon upon a particle at the center of the carth and PC the direction
of the attractive force of the moon upon a particle at P. Now, let
the magnitude of the moon’s attraction at P be rvepresented by the
length of the line PC. Then, since the attraction of gravitation varies
inversely as the square of the distance, it is necessary, in order to
represent the attraction at O on the same seale, to take a line C'Q of

such length that €@ : OP=CPt (O,
10
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34. The line PQ, joining P and @, will then represent the direction
and magnitude of the resultant force that tends to disturb the posi-
tion of P relative to 0, for it represents the difference between the
force PC and a force through P equal and parallel to the force e
which acts upon 0. This last statement may be a little clearer to
the reader if he will consider the foree PO as being resolved into a
force PD equal and parallel to QC, and the force PQ. The force
PD, acting upon the particle at P, being equal and parallel to the
force QC, acting upon a particle at 0, will have no tendeney to change
the position of £ relative to 0. The remaining force P will tend
to alter the position of P relative to O and is the tide-producing
force of the moon at P. The force PQ may be resolved into a vertical
component PR, which tends to raise the water at P, and the hori-
zontal component PT', which tends to move the water horizontally,

Frevre 2.

35. If the point /7 is taken so that the distance (7 is greater than
the distance ('O, the tide-producing force /¢’ will be directed away
from the moon. While at first sight this may appear paradoxical,
it will be noted that the moon tends to separate O from P’ but as
0 is taken as the point of reference, this resulting foree that tends to
separate the points is considered as being applied at the point P’
only.

36. To express the tide-producing force by mathematical equations,
refer to figure 2 and let

r= 0P =distance of particle P from center of carth,

b= P(" ==distance of particle P from center of moon,
d= 00 =distance from center of carth to center of moon,

z== ('OP==angle at center of earth between OF and OC.
Also let
M

=mass of moon,

Il=mass of carth,

a==mean radius of carth,

p==attraction of gravitation between unit masses at unit

distance,

g==mean acccleration of gravity on carth’s surface,
Since the force of gravitation varies direetly as the mass and inversely
as the square of the distance,

. _ . . - . v uMo
Attraction of moon for unit mass at point O in dircetion 0= Vo (2)
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Attraction of moon for unit mass at point /7 in direction £2C=

27, Let cach of these forces be resolved into a vertical component
along the radius OF and a horizontal component perpendicular to the
same in the plane OPC, and consider the direction from O toward £
as positive for the vertical component and the direction corresponding
to the azimuth of the moon as positive for the horizontal component.
We then have from (2) and (3)

. - . . M
Attraction at O in divection O to P== Mclll o8 2 (4)

5 sin 2 (5)

Attraction at O perpendicular to Of

pM

Attraction at P in divection O to P - €08 CPE (6)

- gin OPR (7)

Attraction

88, The tide-producing force of the moon at any point 2 i measured
by the difference between the attraction at P and at the center of
the earth. Letting

F

F.
and taking the differences between (6) and (4) and between (7) and
(5), we obtain the following expressions for these component forces
in terms of the unit u:

P, = 2‘14,’(«(39

M(

39, Trom the plane triangle COP the following relations may be
obtained:

vertical component of tide-producing force, and
‘horizontal component in aztmuth of moon,

CPR.

(®)

Fylu

)

b'Z

b2 e d2—2rd cos z==d*1—2(r/d) cos 2 (r/d)?] (10)
R T i sin 2 v
sin OPR==sin OPO=(d/b) sin 2 [1-—2(r/d) cos 24 (r[d)"]! (1
P12 e an? FTP TN e e cos 2z f/(’[ :
cos OPR== (1 —sin? CPL)k= (9070 cos 21 (I (12)

40. Tn figure 2 it will be noted that the value of g, being reckoned
in any plave from the line OC) may vary from zero to 180°, and al
that the angle (PR increases as 2 increases within the same Hmits.
Sin 2 and sin (PR will therefore always be positive.  As the ang
OCT s always very small, the angle (27 will differ by only a very
sonall amount from the angle 2 and will usually be in the same uiadd-
cant. I obtaining the square root for the numerator of (12) it was
therefore necessary to use only that sign whieh Swould preserve this
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relationship.  The denominators of (11) and (12) are to be consid-
ered as positive,

41. Substituting in equations (8) and (9) the equivalents for b, sin
CPE, and cos CPR from equations (10) to (12), the following basic
formulas are obtained for the vertical and horizontal components of
the tide-producing force at any point P at » distance from the center
of the carth:

oo M cos z—rld L .
Iy fu= d? [{1 ~2(0r/d) cos 2+ (r/d)*}* oS d] (13)
oo, M sin 2 o

T fn= (Z"'z[{]. —2(r{d) cos zF (rjdy?}i T {l (14)

42. To express these forces in their relation to the mean accelera-
tion of gravity on the earth’s surface, represented by the symbol 4,

we have _
glu=IEla, or plg=a*lE (15)

in which /7' is the mass and @ is the mean radius of the earth. Sub-
stituting the above in formulas (13) and (14), we may write

i - - cos z—r/d e :
Ty [g=(M/E) (a/d)* [{1 2(r/d) cos = (rjd)?yi O® {l 16)

sin z

{1—2(r/d) cos z+ (’/’/d)z}iz“wSin {l (17)

43. Formulas (16) and (17) represent completely the vertical and
horizontal components of the lunar tide-producing Torce at any point
in the ecarth. It 7 is taken equal to the mean radius ¢, the formulas
will involve the constant ratio M/ and two variable quantities—
the angle z which is the moon’s zenith distance, and the ratio ald
which is the sine of the moon’s horizontal parallax in respect to the
mean radius of the earth. Because of the smallness of the ratio ald
1t may also be taken as the parallax itself expressed as a fraction of g
radian. The parallax is largest when the moon is in perigee and at
this time the tide-producing force will reach its greatest magnitude.
A more rapid change in the tidal force at any point on the earth’s
surface is caused by the continunous change in” the zenith distance of
the moon resulting from the earth’s votation. The vertical com-
ponent attains its maximum value when 2 equals zero, and the hori-
zontal component has its maximum value when z is a little less than
45°. bubstituting numerical values in formulas (16) and (17) and
in similar formulas for the tide-producing force of the sun, the fol-
lowing arve obtained as the approximate extreme component forces
when the moon and sun are neavest the earth:

Greatest I7, Jg==.144><107° for moon, or .054 X 107 for sun (18)
Greatest J7, fg==.107 3107 for moon, or .041 10 for sun (19)

The horizontal component of the tide-producing force may be meas-
ured by its deflection of the plumb line, the relation of this component
to gravity as expressed by the above formula being the tangent of

the angle of deflection.  Under the most favorable conditions the
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greatest deflection due to the moon is about 0.0227 and the greatest
deflection due to the sun is less than 0.009” of are.

44, To simplify the preceding formulas, the quantity involving the
fractional exponent may be developed by Maclaurin’s theorem into a
series arranged according to the ascending powers of 7/d, this being
a small fraction with an approximate maximum value of 0.018. Thus

i
(1=20/d) cos =+ (r/d)*}*

=1-}-3 cos z (r/d)
+3/2 (5 cos® 2~ 1) (r/d)?
4512 (7 cos® 2—3 cos 2) (r/d)*+ete. (20)

45, Substituting (20) in formulas (16) and (17) and neglecting the
higher powers of 7/d, we obtain the following formulas:

F, lg=3 (M]I0)(ajd)? (cos® 2—1/3) (r/d)

+3/2 (M| E)(a/d)* (5 cos® 2—3 cos z) (r/d)? (21)
F, Jg==312 (M/E)(a/d)* (sin 2 2) (r/d)
+3/2 (M]E) (afd)? sin 2z (5 cos? z—1) (r/d)? 22)

46. If », which vepresents the distance of the point of observation
for the center of the carth, is replaced by the mean radius o, it will be
noted that the first term of cach of the above formulas involves the
cube of the ratio e/d while the second term involves the fourth power
of this quantity. 7This ratio is essentially the moon’s parallax ex-
pressed in the radian unit.  These terms may now be written as sepa-
rate formulas and for convenience of identification the digits “3” and
“4” will be annexed to the formula symbol to represent respectively
the terms involving the cube and fourth power of the parallax. Thus

Fy lg=38 (M/E)(a/d)*(cos® z—1/3) (23)
Fo lg=3/2 (M/E)(a/d)*(5 cos® 2—3 cos 2) (24)
Ty lg==3/2 (M/E) (a/d)® sin 22 (25)
Foulg=3[2 (M|E)(a/d)* sin 2 (5 cos? z2—1) (26)

Formulas (23) and (25) involving the cube of the parallax represent
the principal part of the tide-producing force. For the moon this is
about 98 per cent of the whole and for the sun a higher percentage.
The part of the tide-producing force represented by formulas (24) and
(26) and involving the fourth power of the parallax is of very little
practical importance but as a matter of theoretical interest will be
later given further attention.

47, An examination of formulas (23) and (25) shows that the prin-
cipal part of the tide-producing foree is symmetrically distributed
over the carth’s surface with respect to a plane through the center of
the earth and perpendicular to a line joining the centers of the earth
and moon. The vertical component (23) has a maximum positive
value when the zenith distance z==0 or 180° and a maximum negative
value when 2=90°, the maximum negative value being one-half as
great as the maximum positive value. The vertical component be-
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comes zero when z=cos ' 4+/1/3 (approx. 54.74° and 125.26°). The
horizontal component (25) has its maximum vnluo when z=45° and
an cqual maximum negative value when 2==135°. The horizontal
compon(‘nt becomes zero when z=0, 90°, or 180.

If numerical values applicable to the mean parallax of the moon
are Sllbbtltllt(‘(l in (23) and (25), these component forces may be
written

s Jg at mean parallax=0.000,000,167 (cos® z—1/3) (27)
F g at mean parallax==0.000,000,084 sin 22 (28)

For the corresponding components of the solar tide-producing force,
the numerical coeflicients will be 0.46 times as great as those in the
above formulas.

49. For the extreme values of the components represented by (23)
and (25), with the moon and sun nearest the carth, the following may
be obtained by suitable substitutions:

Greatest Fg Jg=.140>X107% for moon, or .054 X 107% for sun (29)
Greatest Foy Jg=.105>10"° for moon, or .041X107° for sun (30)
Comparing the above with (18) and (19), it will be noted that the

maxlmum values of the lunar components involving the cube of the
moon’s parallax are only slightly less than the cor uspomhng maxi-
mum values for the entire lunar foree, while for the solar components
the differences are too small to be shown with the number of decimal
places used.
YERTICAL COMPONENT OF FORCE

50. Tt is now ploposod to expand into a series of harmonie terms
formula (23) which represents the prineipal vertical component
of the lunar tide-producing foree. In figure 3 let O vepresent the
center of the earth and let projections on the celestial sphere be as
follows:

C, the north pole
I M FP’, the vmth’s equator
1 M, the moon’s orbit

the position of the moon

, the place of observation

M MY, the hour civele of the moon

TP P, the meridian of place of observation

the intersection of moon’s orbit and equator

~-amlo 1\[] A[’ -‘::Hl(‘hndt]()n of moon’s mblt to earth’s equator
- : hour angle of moon
P’ ::;:longitudo of P :fn(‘,asur(‘d in celestinl  equator from
intersection [

M==longitude of moon in orbit reckoned from intersection 1
-~/<nith distance of moon
leclination of moon
== latitude of P
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The solution of a number of the spherical triangles represented in
figure 8 will provide certain relations needed in the development of
the formulas for the tide-producing force.

51, In sphou( al triangle MCP, the angle € equals ¢ and the sides
MO and PO are the Complc.r.ncubs of D and Y, respectively, We may
therefore write

cos z==sin Y sin D--cos Y cos DD cos ¢ (31)
Substituting this value in formula (23), we obtain

Fyg lg=312 (M]E)(a/dy(1/2—3/2 sin® ¥)Y(2/3—2 sin®> D) ... Fug lg
+3/2 (M/E) (a/d)? sin 2Y sin 2D cos t. . Fu /g
+3/2 (ML) (a/d)y® cos® ¥ cos* Deos 2. Fus | g (32)

FIGURE 3.

52. In formula (32) the vertical component of the tide-producing
force has been separated into three parts. The first term is inde-
pendent of the rotation of the earth but is subject to variations aris-
ing from changes in deelination and distance of the moon. 1t in-
cludes what are known as the long-period constituents, that is to say,
constituents with periods somewhat longer than a day and in general
a half month or longer. The sceond gorm. involves the cosine of the
hour angle () ol the moon and this includes the diwrnal constituents
with periods approximating the lunar day. The last term involves
the cosine of twice the hour angle of the moon and includes the
semidiurnal constituents with periods approximating the half lunar
day. The grouping of the tidal constituents according to their
approximate periods affords an important classification in the further
development of the tidal forees and these groups will be called classes
or species. Symbols pertaining to a particular species are often
identified by a subseript indicating the number of periods in a day,
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the subscript o being used for the long-period constituents. In
formula (32) the individual terms are identified by the annexation
of the species subscript to the general symbol for the formula.

53, As written, all of the three terms of formula (32) have the
same coefficient 3/2 (M/E) (a/d)®. In each case the latitude ()
factor has a maximum value of unity, this maximum being negative
for the first term. For the long-period term (I /g), the latitude
factor has a maximum positive value of ¥ at the equator, becomes zero
in latitude 35.26° (approximately), and reaches a maximum negative
value of —1 at the poles, the factor being the same for corresponding
latitudes in both northern and southern hemispheres.  For the diurnal
term. (Iy5; /g), the latitude factor is positive for the northern hemisphere
and negative for the southern hemisphere. It has a maximum
value of unity in latitude 45° and is zero at the equator and poles,
For the semidiurnal terms (F 4, /g), the latitude factor is always posi-
tive and has a maximum value of unity at the equator and equals
zero at the poles.

54. I'or extreme values attainable for the declinational (D) factors,
consideration must be given to the greatest declination which can
be reached by the tide-producing body. The periodic maximum decli-
nation reached by the moon in its 18.6 year node-cycle is 28.6° but
this may be slightly increased by other inequalitics in the moon’s
motion. The maximum declination for the sun, taken the same as the
obliquity of the ecliptic, is 28.45°. The declination factor of the
long-period term (¥4 /g) has a maximum value of 2/3 when the decli-
nation is zero. It diminishes with increasing north or south declina~
tion but must always remain positive because of the limits of the
declination. For the diurnal term (F /g) the declinational factor
has its greatest value when the declination is greatest. For the moon
the maximum value of this factor is approximately 0.841 and for the
sun 0.730. This factor is positive for the north declination and
negative for the south declination. For the semidiurnal term (Fosa [
the declinational factor for both moon and sun is always positive and
has a maximum value of unity at zero declination.

55. The greatest numerical values for the several terms of the
vertical component of the tide-producing force as represented by
formula (32) and applicable to the time when the moon and sun are
nearest the carth, are as follows:

Greatest H 50 Jg=—.070%X10"° for moon, or —.027 %107 for sun (33)
Greatest Fyy /9= -.088 X107 for moon, or --.030% 10° for sun (84)
Greatest T3, [g==-.105> 106 for moon, or --.041 X107 for sun (35)

For the long-period term (33) the greatest value applies to either pole
and is negative. For the diurnal term (34) the greatest value applies
in latitude 45° and may be positive or negative according to whether
the latitude and declinational factors have the same or opposite
signs.  Tor the semidiurnal term (35) the greatest value applies to
the equator and is positive. ,

56. Referring to formula (32), let a/e cqual the mean value of
parallax a/d. Then a/d may be replaced by its equivalent (afe) (¢/d),
in which the fraction ¢/d expresses the relation between the true and,
the mean parallax. Also let U= (M/FE) (afc)?, the numerical valuo
of which will be found in table 1. Txpressing separately the three
terms of formula (32), we then have



18 U. 8. COAST AND GEODETIC SURVEY

Fog lg=3/2 U (e]d)y® (1/2—13/2 sin? Y)(2/3—2 sin* D) (36)
Foai Jg==3/2 U (c¢/d)® sin 2Y sin 20 cos ¢ (37
Fa Jg=3/2 U (¢/d)? cos® ¥ cos* D cos 2¢ (38)

57. Referring to figure 3, the following relations may be obtained
from the right spherical triangles MIM’ and MP’'M’ and the oblique
spherical triangle M P’ 1:

sin D==gin [ sin j (39)
cos I cos {==cos MP’ (40)
cos MP’=cos X cos j-+sin X sin j cos [ “41)
cos D cos t==cos X cos j-sin X sin j cos [

==c0s? LI cos (X-—j)-Fsin? 11 cos (X)) 42)

58. Replacing the functions of D and ¢ in formulas (36) to (38) by
their equivalents derived from equations (39) and (42), there are
obtained the following:

Py [g==3/2 Ule/d)*(1/2—3/2 sin® ¥) X
[2/3 —sin? [+4-sin? I cos 27) 43)

Fog Jg==3/2 Ule/d)® sin 2Y X

[sin [ cos® 41 cos (X--90°—27)

4 1/2 sin 21 cos (X—90°)

+sin 1 sin® 41 cos (X—90°--27)] (44)
Fao Jg=3[2 Ule/d)® cos* ¥ X

lcos* L1 cos (2X—29)

+1/2 sin? I cos 2X

-+-sin* 31 cos (2X427)] (45)

The above formulas involve the moon’s actual distance d and its
true longitude 7 as measured in its orbit from the intersection. While
these are functions of time, they do not vary uniformly because of
certain inequalities in the motion of the moon, and it is now desired
to replace these quantities by elements that do change uniformly.,
59, Referring to paragraphs 23-24 and to figure 1, it will be noted
that longitude measured from intersection A in the moon’s orbit
equals the longitude measured from the referred equinox 77 less arc
£, and longitude measured from intersection A in the celestial equator
equals the longitude measured from the equinox T less arc ».
Now let
&’ =true longitude of moon in orbit referred to equinox
s ==mean longitude of moon referred to equinox
I =difference (s’ —s)
Then
j= — stk (46)
60. In figure 4 let 8’ and P’ be the points where the hour circles of
the mean sun and place of observation intersect the celestial equator,
T the vernal equinox, and I the lunar intersection. Then X will
equal the are 1 and » the arc 7. Now let
h=mean longitude of sun
T'=hour angle of mean sun

X T by 47)

Then
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61. Substituting the values of j and X from (46) and (47) in formu-
las (43) to (45), these may be written

P Jg=3/2 U(1)2—3/2 sin® ¥) X
[(e/d)?(2/3—sn? I)
- (efd)?® sin? I cos (2s—28+2k)] (48)

By Jg=3/2 Usin 2Y X
[(c/d)?® sin I cos® 41 cos (T'—2s+h+4-28—v-+90°—2k)
4172 (¢/d)? sin 21 cos (T+h—v—90°)
A (efd)? sin [ sin? 31 cos (T'++2s-+h—28—v»—90°4-2k)] (49)
Fp lg=3]2 U cos® Y X
[(c/d)® cos* LT cos (20'—28+2h—~+ 28— 2p—2k)
+1/2 (e/d)? sin® I cos (21'-+2h—2v)
- (efd)® sin* 41 cos 2T4-2s+2h— 28— 2v-+2k) (50}

Fraure 4.

Disregarding at this time the slow change in the function of I, the
variable part of each term of the above formulas may be expre essed in
one of the following forms-—(¢/d)?, (¢/d)® cos A, (¢/d)’ cos (A-}-2k), or
(e/d)® cos (A-—2%), in which 4 necludes all the elements of the vmmblc
angular function excepting the multiple of k.

62. The following oquatwns for the motion of the moon were
adapted from. Godiray’s Elementary Treatise on the Lunar Theory:

8’ ==1true longitude of moon (in radians)

B (mean longitude)
l Ze sin (s—p)-+56/4 ¢ sin 2(s—p). ... (elliptic inequality)
~+15/4 me sin (s—2h-+ 7)) ____________ (evectional inequality)

+U/“§ m? sin 2(s~—~h) . ____._ .. (variational inequality) (51)
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efd == (true parallax of moon)/(mean parallax of mobn)
== Uity o
e cos (s—p)-tet cos 2(8—p). ... _(clliptic inequality)
4-15/8 me cos (s—2h-Fp)......_ . (eveetional inequality)
A=m? cos 2(s—h). . ... ... (variational inequality) (52)

in which

=true longitude of moon in orbit (referred to equinox)
wean longitude o!" moon

ncan, 1()11()1111(!0 of sun

-mean longl sude of lunar perigee

ccentricity of moon’s orbit=0.0549

-ratio of mean motion of sun to that of moon=20.0748

m==

The elements ¢ and m are small fractions of the first order and the
square of either or the produet of both may be considered as being of
the second order.  In the following development the higher powers of
these clements will be omitted.

63. Since & has been taken as the difference between the true and
the mean longitude of the moon, we may obtain from (51)

k==2¢ sin (xwp) 5/4 ¢ sin 2(s—p)
F15/4 me sin (8~2h-+p)y -+ 11/8 m? sin 2(s—h) (53)

The value of k is always small, its maximum value being about 0.137
radian. It may therefore be assumed without material ervor that the
sine of & or the sine of 2k is equal to the angle itself. Then
2e=4e sin (s—p)-+5/2 e gin 2(s-—p)

1572 me sin (g-—2h-}-p)-+11/4 m® sin 2(s—Ah) (54)
—2 8in? kel - 2/{’2

==l —det--4e? cos 2(s—p) (55)
terms smaller than thow of the second order being omitted,

sin 2k=

cos 2f-

64. Cubing (52) and ncglecting the smaller terms, we obtain

(¢fd)?==1-]-3/2 ¢*43e cos (s—p)+0/2 € cos 2(s—p)
+45/8 me cos (8-2h-+p) -3 m? cos 2(s—h) (56)

Multiplying (64) and (55) by (56)
(¢/d)?® sin 2k :4(’ sin (s—p)--17/2 ¢* sin 2 (s~ ])

~~~~~ 1502 me sin (8- 2h-Fp) - 11/4 m? sin 2(s—h) (57)
(e/d)? cos 2k==1—5/2 -3 ¢ cos (s—p)-1 // e* cos ‘>(\~- P)
+45/3 me cos (s—2h-Fp)+3 m? cos 2(s—h) (58)

65. I'rom (56), (57), and (58), we may obtain the following general
expressions applicable to the further development of formulas (48)
to (50). Negative coeflicients have been avoided by the introduction
of 180° in the angle when necessary.,

(('/([ b eos (A—28)==(c/d)* cos 2k cos A~ (efd)* sin 2k sin A
== (1—5/2 %) oS, A
4712 e cos (A3
117/2 ¢ cos (A- ))
- 105/16 me cos (A s +-2h—p) - 1”)/1 6 me cos (A-+s—2h-+p--180°)
+23/8 m? cos (A—25--2Rh)+1/8 m? cos (A--25—2h) (59)

...... -+ 180°)

-2
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(e/d)? cos A= (1-4-38/2 %) cos A
+3/2 ¢ cos (A—s-p)-+3/2 e cos (A-+s—p)

-+0/4 e cos (A—25-12p)--9/4 ¢* cos (A+25—~2p)
+-45/16 me cos (A—s+42h—p)--45/16 me cos (A-+s—2h-+p)
+3/2 m?* cos (A—2s4-2h)43/2 m? cos (A+-2s—2h) (60)

(e/d)® cos (A-+2k)=(c/d)* cos 2k cos A— (¢/d)? sin 2k sin A

+7/2 ¢ cos (A-+s—p)+1/2 e cos (A—s-+p-180°)

+-17/2 €? cos (A-+2s—2p)

+105/16 me cos (A-4s—2h-+p)--15/16 me cos (A—s42h-p-}180°)
+23/8 m* cos (A-+4-25—2h)41/8 m? cos (A—2s-2h) (61)

66. After suitable substitutions for A have been made in the three
preceding equations they are immediately applicable to the final
expansion of the several terms in formulas (48) to (50), excepting the
first term of (48) for which formula (56) may be used directly. Iach
term in the expanded formulas given below represents a constituent
of the lunar tide-producing force and for convenience of reference is
designated by the letter 4 with a subscript.  There are also given the
generally recognized symbols for the principal constituents, and when.
such a symbol is enclosed in brackets it signifies that the term given
only partially represents the constituent so named.

67. Formula for long-period constituents of vertical component of
principal lunar tide-producing force:

Bl fg==3/2 U(1/2—3/2 sin® 1) X
Ay [@/3— sin® D{(1-+3/2 e ... _.______permanent term

A, +3ecos 8—p) ... Mm
(Asg) +9/2 ¢ cos (28—2p)
(A, 4-45/8 me cos (s-~2h-+p)
(Ay) +3mPeos (2s—2R) ... ______ .. MS8f

(Ag) -+ sin? I{(1—5/2 € cos (28—28)_ ... Mt

A7) 4712 ¢ cos (Bs—p-—2¢)

(Ag) +1/2 ¢ cos (s+p-+180°-2¢)

(A,) 41712 ¢* cos (ds—2p—2§)

(Aw) +-105/16 me cos (3s—2h--p—2f)

(Ay) +-15/16 me cos (s-+2h—p--180°—2§)

(Ap) +23/8 m? cos (4s-—2h—2§)

(Ay) +-1/8 m? cos (2h—28) 1] (62)

68. I'ormula for diurnal constituents of vertical component of
principal lunar tide-producing force:
Uy Jg==3/2 U sin 2Y %
(Ay) [sin T cos? 1/21

{(1—5/2 ¢ cos (T—2s-Fh-+90°1-26—») _ O,
(Ays) +7/2 ¢ cos (I'—3s+h-+p++90°--28—») . Q
(Ag) +1/2 e cos (L'—s+h—p-—-90°+26—p) .. [M,]
(A A+17/2 € cos (T—ds | h--2p-F90°1-26—)__ 20Q,
(Ajg) +105/16 me cos (T 3s-}- Bh—p 490428 - p). o1
(Ay) - 15/16 me cos (T~ s-—h--p—90°42£—»p)
Az ~+23/8 m? cos (I'—4s-+3h-+90°4-2¢—p) . ___ o
(Aap) +1/8 m? cos (T'—h-90° 4 2&— 1)}

(Formula continued next page)
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(Asp) Isin 27{ (1/243/4 %) cos (T+4h—90°—v) _____.__ (K]

(Asy) +3/4 ¢ cos (L'—s-Fh4p—90°—w) _______.. [M]

(Agg) +-3/4 e cos (T+s+h—p—90°~py_ ... J,

(Ays) +9/8 ¢* cos (T~ 284 h-+2p—90°-»)

(Ag) +9/8 é* cos (T+28+h—2p-—~90°—7)

(Ag) 4532 me cos (T'—8-++3h—p—90°—p)_ .. __ X1

{Ags) +-45/32 me cos (T'4s-—h-p—90°—p) ... __ 6,

(Agy) +3/4 m?cos (I'—28+3h~00°—v)y_._.__._._ MP,

(Ag) +-3/4 m?cos (I'+-28—h—90°—»)} . ___._... SO,
“sin L sin? Y1

(Ay) {(1—5/2 €*) cos (T+2s+h—90°—28—1)__. 00O,

(Ase) +7/2 ¢ cos (I'+3s4-h—p—90°—2&—»)____ KQ,

(Ay) 1-1/2 € cos (15 h-p-+90°— 28 )

(Asy) 1712 € cos (T+4s+h-—2p-—90°—2f—1)

(Ass) 4 105/16 me cos (I'+3s—h-Fp—90°—2&—p)

(Agg) 4-15/16 me cos (T 3h—p-00°—2E—p)

(As) 4-23/8 m? cos (T'-}-4s—h—90°—2&—y)

(A5 +1/8 m? cos (T+43h—90°—2£—») )] (63)

69. Formula for semidiurnal constituents of vertical component of
principal lunar tide-producing force:

Fuy J[g=3]2 U cos*Y X

(Aso) [eos* TT{(1—5/2 ¢*) cos (2T —2s-F2h-}-26—20) ____ M,

(Ay) 1-7/2 ¢ cos @T—3s--2h~+p-+25—20) ... N,

(A +1/2 e cos QT —84-2h—p-180°4-25~2y) - [Lu]

{Agp) +-17/2 ® cos (2T —As--2h-+2p+28—20) .. 2N,

(Ag) 4-105/16 me cos 2T —3s+4h—p--28—2p) . vy
(W $-15/16 me cos T —s-+-p-+180°-F28—2p) . Ao

(Aqs) +23/8 m* cos 2T —4s-+4h-+26—20) __.__ i

{(Ay) 4-1/8 m?cos 2126 —20) }

(Ag) +sin?T{(1/2-3/4 ¢*) cos QT42h—20) ... ... [Ky

(Ayg) +3/4 ¢ cos 2T —s--2h-+p—2v) _______.. [Lu

(As) +3/4 e cos (2THs-+2h—p—2v) ... ... KJ;

{As) 1-9/8 e cos (2025 +2h-2p—2)

Asp) +9/8 ¢” cos (274-28-4-2h—2p—2»)

(Asa) 1-45/32 me cos QT —s+4h—p-2p)

{As +45/32 me cos (20 s-+p-2v)

(Ase) +-3/4 m? cos (2T —28-+-4h—2v)

Ags) 4374 m? cos (2T +2s-—2p)}

(Ago) +-sin* $I{ (1—5/2 ¢) cos (2028 2h—2E—2p)

(As) 4712 e cos (2T--3s-4-2h—p—2t—2)

(Ass) +1/2 e cos (2T~ s-+2h-+p -} 180°—2E—2p)

(Aso) +17/2 ¢ cos (20 -+4s+2h—2p—2E—2p)

(Ag) ~+105/16 me cos R1--3s-+p—2£--2)

(Ag1) +15/16 me cos 27T --s44h—p-- 180°—2§—2p)

(Ago) +23/8 m? cos 2T+ 48~—~2E—2p)

(Ag) +1/8 m? cos QT+ 4h—28—20) }] (64)

70, Arguments.—¥xcept for the slow changes in the values of I, &,
and » which result from the revolution of the moon’s node, each term
other than the permanent one in the three preceding formulas is an
harmonic function of an angle that changes uniformly with time,
This angle is known as the argument of the constituent, also as the
equilibrium argument when obtained in connection with the develop-
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ment of the equilibrium tide. By analogy, the argument of the per-
manent term may be considered as zero, the cosine of zero being unity.

71. The arguraent serves to identify the constituent by determining
its speed and period and fixing the times of the maxima and minima
of the corresponding tidal force. Tt usually consists of two parts
represented by the symbols V and w. When referring to a particular
mstant of time such as the beginning of a series of observations, the V
is written with a subsecript as Vi, The first part of the argument in-
cludes any constant and multiples of one or more of the following
astronomical elements—17, the hour angle of the mean sun at the
place of observation; s, the mean longitude of the moon; & the mean
longitude of the sun; and p, the longitude of the lunar perigee. The
second part « includes multiples of one or both of the elements £ and »,
which are functions of the longitude of the moon’s node and vary
slowly between small positive and negative limits throughout a 19-year
cyele. In a series of observations covering a year or less they are
treated as constants with values pertaining to the middle of the series.
They do not aflect the average speed or period of the constituent.
Their values corresponding to each degree of N, the longitude of the
moon’s node, are included in table 6, formulas for their computation
being given on p. 156,

72. The hourly speed of a constituent may be obtained by adding
the hourly speeds of the clements included in the V of the argument.
These elementary speeds will be found in table 1. The period of a
constituent is obtained by dividing 360° by its speed.  The approxi-
mate period is determined by the element of greatest speed contained
in the argument. Thus, the hour angle 7 has a speed of 15° per
mean solar hour and all constituents with a single 7' in their argu-
ments have periods approximating one day, while constituents with
arguments containing the multiple 27" have periods approximating
the half day. Next to 7, the element of greatest speed is ¢ the
mean longitude of the moon, and long-period constituents with a
single ¢ in their arguments will have periods approximating the
month and with any multiple of s the corresponding fraction of a
month. The arguments and speeds of the constituents are listed in
table 2. Numerical values of the arguments for the beginning of
cach calendar year from 1850 to 2000 are given in table 15 for con-
stituents used in the Coast and Geodetic Survey tide-predicting
machine. Tables 16 to 18 provide differences for referring these
arguments to any day and hour of the year.

73. In order to visualize the arguments of the constituents depend-
ing primarily upon the rotation of the ecarth, some have found it
convenient to conceive of a system. of fictitious stars, or “astres fictifs”
as they are sometimes called, which move at a uniform rate in the
celestial equator, each constituent being represented by a separate star.
Thus, for the principal lunar constituent we have the mean moon and
for the principal solar constituent the mean sun, while the various
inequalities in the motions of these bodies are served by imaginary
stars which reach the meridian of the place of observation at times
corresponding to the zero value of the constituent argument. For
the diurnal constituents the argument equals the hour angle of the
star but for the semidiurnal constituents the argument is double the
hour angle of the star.
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74, (*()()‘[[i('z'(n'/x =-The complete coefficient of each term of formulas
(b)) to (64) includes several important factors.  First, the basie factor

, which equals the ratio of the mass of the moon to that of the carth
multl lied by the cube of the mean parallax of the moon, is ('mmnon
to all of the terms.  This together with the common numerical coeffi-
cient may be (l(\sig;rmt,(‘d as the general ('0(1[/, qent.  Next, the function
involving the latitude 1 is known as the latitude factor, (\1(711 formula
having a different latitude factor.  Following the th,liud(\ factor is a
funetion of 7, the inclination of the moon’s orbit to the plane of the

rarth’s (mmtm' which may appropriately be called the obliquity factor,
each facte applyving to a group of terms,  Lastly, we have an indi-

vidual term cocfficient which includes a numerieal factor and involves
ﬂw quantity e or m, Sinee these factors ave devived from the equa-
tions of clliptie 'rm)tion they will here be veferred to as elliptic fuctors.
The produet of the (\lh[){lo factor by the mean value of the obliquity
factor is known as the mean constituent coeficient (). Numerieal
values for ¢ n(“ e cocflicients are given in table 2. Sinee all terms in
any one of the formulas have the same general coofficient and latitude
factor, their relative magnitudoes will be proportional to their constitu-
ent coeflicients.  Terms of difforent fo rmulas, however, have different
latitude factors and their constituent coefficients are not directly
comparable without taking into account the latitude of the place of
ohservation,

75. The obliquity factors ave subject to varintions throughout an
18.6-year cvele hecause of the vevolution of the moon’s node.  Dur-
g this period the value of 7 varies botween the limits of w—1i and
w--1, or from 18.3° to 28.6° approximately, and the functions of 7
('lmnw‘ accordingly.  In order that tidal data pertaining to different
vears may be made comparable, it is neees sary to adopt certain stand-
ard mean values {or the obliquity factors to which results for dilterent
vears may be reduced.  While there are several systems of means
which would serve equally well as standard values, the gvstem adopted
by Davwin in the carly development of the harmonic analysis of U(!(‘
has the sanction of long usage and is therefore followed. By the
Darwin method, the mean for the obliquity factor is obtained from
the product of (h(‘ obliqquity factor and the cosine of the elements &
and » appearing in the argument. This mav be expressed as the
mean value of the product oJ cos 2, in whieh o/ is the function of 1 in
the coctlicient and 2 the function of & and » in the argument.  Since
wis relatively small and its cosine differs little from unity, the result-
ing mean will not differ greatly from the mean of J alone or from the
function of 7 when 01\011 1ts mean value.

76. Using Darwin’s svstem as deseribed in section 6 of his paper
on the Harmonie Analysis of Tidal Obscry ations published in volume I
of his collection of Seientific I apers (also in Report of the British
Association for the Advancement of Seience in 1883), t'w following
mean values are obtained for the obliquity factors in formulas (62) to
(64).  These values were used in the computation of the corresponding
constituent cocllicients m table 2. The subseript , is here used to
indicate the mean value of the function.

For terms A, to A; in formula (62)

[2/3—sin? []y==(2/3—sin? ) (1—3/2 sin? 1) ==0.5021 (A
Ior tm’ms Ag to A5 in formul a (62)
2 [ cos 28g==8in? w cos* 1=0.1578 (6H6)
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For terms AH to <1y in formula (63)

[sin £ cos® L1 cos (26— p)|y==sin w cos’ Ju cos' Li==0.3800 (67)
For terms ly to 2y in formula (63)

[sin 21 cos ply==sin 2w (1--3/2 sin® [)=0.7214 (68)
For terms A,l to Ayg i in folmnla (63)

[sin I sin® 41 cos (2E-+»)]p==sin w sin® fo cos' L (69)
For terms Ay to Ay in formula (64)

[cos* 41 cos (28— ’v) Jo==cos® Jo cos* 1i==0,9154 (70)

For terms Ay to A m formula (()4)

[sin® 1 cos 2v]g==sin® @ (1—3/2 sin®{)==0.1565 7
For terms Ay to g in formula (()4)

[\m‘ S0 cos (264-2p)]y==sin' o cos' Li==0.0017 (72

'I he ratio obtained by div ldmo the true obliquity factor for

any value of 1 by its mean value may bv called 2 n«n/(’ /(1(*[(// sinee it is
a function of the longitude of the moon's node.  The ¢ svinbol generally
used for the node lsu'tm is the small 7. The node faetor may be used
with a mean constituent (‘oofh(*wn{ to obmm the true cocfficient
corresponding to a given longitude of the moon's node.  Node factors
for the several terms of formulas (62) to (64) may be expressed by the
following ratios:

‘ ( 0 to LA = f(Mm) == (2/3—sin? 1)/0.5021 (73)
FAy) to flAy ‘/(Mf) sain® [ /01578 (74)
) (Al,) to flehy)=f(O) ==sin I cos* 11 /0.3800 (75)
T to Ay in 21 /0.7214 (76)
/‘(11;1) to f(Ag) sin [ sin® L1 /0.0164 (77)
J(elio) to flely) =f (M) = cos' 11 /0.9154 (78)
\/ (111,) to f(Ass) ==sin* I /0.1565 )

(i) to f(A m) sin' 1 7 /0.0017 (80)

Node factors for the middle of cach calendar year from 1850 to 1099

are given in table 14 for the constituents used in the Cloast and
Creodotic Survey  tide-predieting wachine. These inelude all the
factors above excepting fmmulls (T9) and (80). However, sinee
formula (79) wr)m(nm an mumsv of only about onc per cent over
formula (74), the tabular values for the latter are readi Ly adapted to
formula (/9). Node factors change slowly and int oy 0[1 tions can be
made in table 14 for any desived part of the vear.  For practieal
purposes, however, the values for tho middle of the 3(uu are generally
taken as constant lm Hw entire yea

78. T'he reciprocal of the node factor is o alled the reduction factor
and is usually represented by the capital 7, Applied to tidal coefli-
cients pertaining to any particular year, the reduction factors serve
to reduce them to a uniform standard in order that they may bo
comparable, Ilogdnlhmx of the reduction factors for every tenth of
a degree of I are given in table 12 for the constituents used on the
tide-predict mﬂ machine of thls office.

79. Formulas (62), (63), and (64), for the long-period, diurnal, and
semidiurnal constituents of the vertical component of the tide- ~Pro-
ducing force may now be summarized as follows:

Let L==constituent argument from table 2
C==mean constittent coefficient from table 2
f ==node factor from table 14
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Then
Fr jg=3/2 U(1/2—3/2 sin*}") = fC cos B (81)
Fo fg=3/2 U sin 2V 2 fC cos ¥ (82)
Fop ig=312 U cos?Y = fC cos IV (83)

Latitude factors for each degree of 17 are given in table 3. The
colummn symbol in this table is 17 with annexed letter and digits corre-
aponding to those in the designation of the tidal forces, Thus, Y
represents the latitude factor to be used with force Fl, ite value
heing equal to the funetion (1/2—3/2 sin?17).  Taking the numerical
value for the basie factor {7 from table 1, the general coeflicient 3/2 €
is found to be 0.8373 X107,
HORIZONTAL COMFONENTS OF FORCE

80, The horizontal component of the principal part of the tide-
producing foree as expressed by formula (25), page 14, is in the divee-
tion of the azimuth of the tide-producing body. This component
may be further resolved into a north-and-south and an east-and-west
direetion.  In the lollowing discussion the south and west will be
considered us the positive directions for these components.  Now let

oy lg==south component of principal tide-producing foree

Feq fg=west component ol principal tide-producing force

A sazimuth of moon reckoned from the south through the west,
Trom formula (23), we then have

Py fg==312 (MTE) (afd)® sin 2z cos A (84)
Flos g==302 (M (afd)? sin 2z ¢in A (85)

81. Referring to figure 3, page 16, the angle P/PM equals o, the
azimuth of the moon. Now, keeping in mind that the angle MPC
is the supplement of A, the angle PCM equals t, and the ares 37¢ and
P are the respeetive complements of D and 17, we may obtain from
the spherieal triangle 3P the following relations:

sin 2z cos A= —cos ¥ sin [D-}sin Y cos D cos ¢ (86)
sin 2 sin A==cos [) sin ¢ (87)

Multiplying ecach of the above equations by the value of cos z from
b

formula (31), the following equations may be derived:
sin 22 cos A=2 sin z cos z cos A

—cos 2Y sin 2/) cos ¢ .
+1/2 sin 21 cos?DD cos 2t (88)

==sin } sin 200 sin ¢
+cos 17 costD sin 21 (89)

82. Substituting in (84) and (85) the quantities from equations (88)
and (89), we have

Fo lg=9/8 (M]E)(afd)? sin 2¥ (2/3—2 sin® D). ... Fulg

------ 312 (MIEY (a/d)? cos 2Y sin 2D cos ... ... Faly

34 (MY (afdy? sin 2Y cos*Dcos 26 .. ... Falg (90)
Fog =312 (MIE) (@/d)? sin Ysin2Dsint. ... ... Fulg

+3/2 (MIE) (afd)* cos Y eos?Dsin 2t ... ... Fuz g (91)
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The south component is expressed by three terms representing respee-
tively the long-period, diurnal, and semidiurnal constituents. For the
west component there are only two terms—the diurnal and semidiur-
nal, there being no long-period constituents in the woest component.
Bach term has been llldll\(‘( separately by a svimbol with annexed
digits analogous to those used for the vertical component to indieate
the elass to which the term belongs.

83. (‘ompmin x formula (90) for the south component with formula
(32) for the vertical component, it will be noted that the same functions
of D an(l t are involved in the corresponding terms of both formulas,
and that the terms differ only in their numerieal coeflicient and the
lutilud«\ factor.  Allowing for these differences, summarized formulas
mmlog(ms to those given for the vertical component (page 26) may
be veadily formed.  In order to vllmmato the m\gntnv sign of the
('oo[h(*u nt of the middle term, 180° will be applied to the arguments of
that term, With all svmbols as before, we then have

1 wo Jg=9/8 {"sin 212 fC cos [¢ (92)
w Jg==3/2 U cos 21 2 fC cos (F--180°) (H3)
]m Jy==3/4 U sin 2172 fC' cos [ H4)

84. Comparing the two terms in formula (91) for the v» est com-
ponent with the corresponding terms in formula (32) for the vertieal
component, it will be noted that the 2 functions are the same but that
in (91) the sine replaces the cosine for the functions of £ It may be
shown that the corresponding development of these terms will be
the same as for the vertical component exeept that in the (lowlopvd
series each argument will be represented by its sine instead of cosine,
In order that the summarized formulas m v be expressed in cosine
funetions, 90° will be subtracted from each argument.  With the same

symbols as before and allowing for differences in the latitude factors,
we obtain

"',m Jg==3/2 [/ sin ¥ % §C cos ([1—90°) (05)

Fugo =312 U cos ¥ = fC cos (I1—90°) (96)

85. Formulas for the horizontal ('ompmwnt of tide-producing foree
in any given divection may be dervived as follows:  Let .1 vqlml the

azimuth (Ul(‘fl‘»lll(‘(l rom south through west) of given (luw' tion, and
let B Jg, Fus g9, and Fo g, lmp(‘(ti\(lv represent the tong-period,
diurnal, and semidiuenal terms of the component in this direction,
Then

Fon [g=Faa ly>cos A (97
F o //,(/W’[ gy Jgeos A-b F fg sin (98
By Jg==F gy g eos cUb oy Jy><sin o (90)

As the l('msrwpuiod term has no west component, the summarized
formula for the azimuth 4 may be derived by «unpl\ mtroducing the
factor cos .1 into the (‘()t‘”l(‘l(‘nl of formula (92). For the diurnal and
semidiurnal terms iU is neeessary to combine the resolved elements
from the south and west components.

86. Relerring to formulas (93) to (96) and considering a =ingle
constituent in each species we obtain the following:



28 T. 5, COAST AND GEODETIC SURVEY

Diurnal constituent,
312 [f(Y [cos 21 cos A cos (0] M)O) - sm ) sin A cos ([1—00%)]

=312 UfC (w-('os 2Y cos A cos [0} )

=3/2 UfC P, cos (F£— X)) (100)
in which

Pr=:(c0s? 21 cos® A--sin® ¥ sin? A) (101)

&m Y %’m A

Ni==tan e P
T -cos 21 cos A

(102)
Svmi(lim'nnl (*onstituonl
/2 UfC Jsin ¥ cos 17 cos A cos Fb-cos ) sin A Cos ([f —00°)]
4%/2 (FC cos ¥ (sin 1 cos 2 cos J-s

23J2 UFC Py cos (F5— X, : (103)

i which
Py==cos V7 (sin? V7 cos? A-fsin? A) (104)
) " sin ’;’1 .
Xp==tan sin } cos A (105)

§7. Summarized formulas for the horizontal component of the
tide-producing force in any direction A may now he written as follows:

Floo Jg==0/8 U sin 21 cos A % f( cos I (106)
P Jg==312 UP, 2 {C cos (11— X)) (107)
Foo Jg==3/2 UPs 2 (" cos (11— X)) (108)

the values for £2,, 2, X\ and ) being obtained by formulas in the
preceding ])(lhl(‘l aph. £y and Py ave to be taken as positive and the
following table will lo found convenient in determining the proper
quadrant for .X| and X

North Iatitude South latitude

[FHIE 1«llnnt

x ! X2 ; X, : A !
l (uardrant Coquadrant L quadrant |
i f
1 [ N | : 2
“ 2 Lot 2 : ! !
3 I Jors 3 1 ! 4
; | ; 3
i |

-+ | sort

For the Xy quadrant the firvt value of each pair is applicable when the latitude does not exceed 45° north
or south.  Otherwise the seccond value is applicable.

EQUILIBRIUM TIDX

88. The equilibrium theory of the tides is a lnpmlwals under which
it is assumed that the waters covering the [aee of the earth instantly
espond to the tide-producing forces of the moon and the sun and
form a surface of equilibrium uvnder the action of these forces. The
theoryv disregards hl('u(.n and inertia and the irregular distribution of
the land masses of the earth.  Although the actual tidal movement
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of nature does not even approximate to that which might be expected
under the assumed conditions, the theory is of value as an aid in
visualizing the distribution of the tidal forces over the surface of the
earth. The theoretical tide formed under these conditions is known
as the equilibrium tide, and sometimes as the astronomical or gravite-
tional tide.

89. Under the equilibrium theory, the moon would tend to draw
the earth into the shape of a prolate spheroid with the longest axis
in line with the moon, thus producing one high water directly under
the moon and another one on the opposite side of the earth with a
low water belt extending entirely around the earth in a great circle
midway between the high water points. It may be shown mathe-
matically, however, that the total eflect of the moon at its mean dis-
tance would be to raise the high water points about 14 inches above
the mean surface of the earth and depress the low water belt about
7 inches below this surface, giving a maximum range of tide of about
91 inches. The corresponding range due to the sun is about 10 inches,
Figures 5 and 6 illustrate on an exaggerated scale the theoretical
disturbing effect of the moon on the earth. In the first figure the
moon is assumed to be dircctly over the equator and in the last figure
the moon is approximately at its greatest north declination.

90. With the moon over the equator (fig. 5), the range of the equi-
librium tide will be at a maximum at the equator and diminish to
zero at the poles and at any point there will be two high and low
waters of equal range with each rotation of the carth. With the
moon north or south of the equator (fig. 6), a declinational inequality
is introduced and the two high and low waters of the day for any given
latitude would no longer be equal except at the equator. This
inequality would increase with the latitude and near the poles only
one high and low water would occur with each rotation of the earth.
Although latitude is an important factor in determining the range of
the equilibrium tide, it is to be kept in mind that in the actual tide
of nature the latitude of a place has no direct effect upon the rise and
fall of the water.

91. A surface of equilibrium is a surface at every point of which the
sum of the potentials of all the forces is a constant. On such a
surface the resultant of all the forces at each point must be in the
directicn of the normal to the surface at that point. If the earth
were a homogeneous mass with gravity as the only force acting, the
surface of equilibrium would be that of a sphere. Each additional
force will tend to disturb this spherical surface, and the total deforma-
tion will be represented by the sum of the disturbances of each of the
forces acting separately. In the following investigation we need not
be especially concerned with the more or less permanent deformation
due to the centrifugal force of the earth’s rotation, since we may
assume that the disturbances of this spheriedal surface due to the
tidal forces will not differ materially from the disturbances in a true
spherical surface due to the same cause.

92. The potential at any point due to a force is the amount of work
that would be required to move a unit of matter from that point,
against the action of the force, to a position where the force is zero.
This amount of work will be independent of the path along which
the unit of matter is moved. 1f the force being considered is the
gravity of the earth the potential at any point will be the amount
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of work required to move a unit mass against the foree of gravity
from the point to an infinite distance from the earth's center. For
the tide-producing force, the potential at any point will be measured
by the amount of work necessary to move the unit of mass to the
earth’s center where this foree is zero.

93. Referring to formula (21) for the vertical component of the tide-
producing force, if the unit ¢ is replaced by the unit 4 from equation
(15), the formula may be written as follows:

_BuM 3uf .

I - (cos® z—1/3)r- ;-E-[;—'(S cos’ z—3 cos z)r? (109)

94. Considering separately the tide-producing potential due to the
two terms in the above formula, let the potential for the first term
involving the cube of the moon's distance be represented by Vi and
the potential for the second term jnvolving the 4th power of the
moon’s distance by V7. In cach case the work required to move a unit
mass against the force through an infinitesimal distance —dr toward
the center of the carth is the produet of the force by —dr, and the
potential or total work required to move the particle to the eenter of
the carth may be obtained by integrating between the limits 7 and
zero.  Thus

¢ g . )
Viyr= M;f:[}—[ (cos? .a’~1,ﬁ3)j rdr
:E)%[‘;[ (cos? z—1/3)r (110)
¢ ¢
| Efp—— g‘f(}f(S cos® 23 cos .z')j e
M

S 5 cos® z—3 cos 2)r° (11

95. At any instant of time the tide-producing potential at different
points on the carth’s surface will depend upon the zenith distance (2)
of the moon and may be either positive or negative. It will now be
shown that the average tide-producing potential for all points on the
earth’s surface, assuming it to be a sphere, is zero.  Assume a series
of right conical surfaces with common apex at center of earth and axis
coineiding with the line joining centers of earth and moon, the angle
between the generating line and the axis being z. These conical
surfaces separated by infinitesimal angle ¢z will cut the surface of the
sphere into a series of equipotential rings, the surface area of any ring
being equal to a 2 7 72 sin 2z dz.  The average potential for the entire
spherical surface may then be obtained by summing the products of
the ring areas and corresponding potentials and dividing the sum by
the total surface area of the sphere.  Thus

2 7
Average 1y f (cos? z—1/3) sin z dz
J O

i

—1/3 cos? z--1/3 cos :J ==() (112)
)
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3 e
Average V;m%ﬁ (5 cos® 2—3 cos 2) sin 2 dz

a3 c
::Wm[:wfi//& cos! 2--3/2 cos? z] =() (113)
E 0

96, Let V, represent the potential due to gravity at any point on
the earth’s surface. Since the force of gravity at any point on or
above the earth’s surface equals pk/r? the corresponding potential
becomes

(edr pl

Vymspll § == 114
A r e P ( )
Tf the earth is assumed to be s sphere with radius a, the gravitational

potential at each point will equal uF/a, which may be taken as the
average gravitational potential over the surface of the earth.

97, For a surface of equilibrium under the combined action of
gravity and that part of the tide-producing force involving the cube
of the moon’s distance the sum of the corresponding potentials must
be a constant, and since the average tide-producing potential for the
entive surface of the earth is zero (par. 95), the constant will be the
average gravitational potential or pf/a. Then from (110) and
(114) we have

Vi V=S (cos? a1y H =t (19

‘Transposing and omitting common factor p, we may obtain

&:‘;‘3@@33/2 (M}E) (a/d)?(cos® z—1/3) (116)

Let
r=a-+h (117)

o that h represents the height of the equilibrium surface as referred
to the undisturbed spherical surface of an equivalent sphere. Then

) ha? ’
0o s W31y +6 (i —ote. (118)

As fraction h/a is very small, its greatest value being less than
0.000001, the powers above the first may be neglected. Substituting
in (116) and writing & with subscript 5 to identify it with the prin-
cipal tide-producing force, we have

hy fa=3/2 (M]E)(a)d)* (cos® z—1/3) (119)

98, Similarly, for a surface of equilibrium under the combined
action of gravity and the part of the tide-producing force involving
the 4th power of the moon’s distance, we have from (111) and (114)

pE_pk

Vi V,,m%z—‘—d{@ cos® z—3 cos )1’ ==

(120)
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ﬁﬁ%‘lﬁzl_/z (M/E) (afd)*(5 cos® z—3 cos 2) (121)

Letting r=a-hy and expanding the first member of the above formula,
it becomes equal to Ay /a after the rejection of the higher powers of this
small fraction. The formula may then be written

hy Ja=1/2 (M]E)(a/d)*(5 cos® z—3 cos z) (122)

99. Tormulas (119) and (122) involving the cube and 4th power of
the moon’s parallax, respectively, represent the equilibrium heights
of the tide due to the corresponding forces, the heights being expressed
in respect to the mean radius (@) of the earth as the unit. In deriving
these formulas the centrifugal force of the earth’s rotation was dis-
regarded and the resulting heights rvepresent the disturbances in a
true spherical surface due to the action of the tide-producing force.
It may be inferred that in a condition of equilibrium the tidal forces
would produce like disturbances in the spheroidal surface of the earth
and the A of the formulas may therefore be taken as being referred to
the earth’s surface as defined by the mean level of the sea.

100. The extreme limits of the equilibrium tide, applicable to the
time when the tide-producing body is nearest the earth, may be
obtained by substituting the proper numerical values in formulas
(119) and (122). They are given below for both moon and sun.

From formula (119) involving the cube of parallax—

Greatest rise  =1.46 feet for moon, or 0.57 foot for sun (123)
Lowest fall  =0.73 foot for moon, or 0.28 foot for sun (124)
Tixtreme range==2.19 feet for moon, or 0.85 foot for sun. (125)

From formula (122) involving the 4th power of parallax—

Greatest vise  ==0.026 foot for moon, or 0.000025 foot for sun  (126)
Lowest fall  =0.026 foot for moon, or 0.000025 foot for sun (127)
Extreme range:==0.052 foot for moon, or 0.00005 foot for sun. (128)

101. A comparison of formulas (23) and (119), the first expressing
the relation of the vertical component of the principal tide-producing
force to the acceleration of gravity (¢9) and the other the relation of
the height of the corresponding equilihrium tide to the mean radius (o)
of the carth, will show that they are identical with the single excep-
tion that the coeflicient of the height formula is one-half that of the
force formula, Thercfore the development of the force formula into
a series of harmonic constituents is immediately applicable in obtain-
ing similar expressions for the equilibrium height of the tide. Using a
notation for the height terms corresponding to that used for the force
terms, lebt hso /e, hay Jo, and hs, /e vepresent, respectively, the long-
period, diurnal, and semidivimal terms of the equlibrium tide involyv-
ing the cube of the moon’s parallax. Then referring to formulas (81)
to (83) we may write

hao fa==38/4 U(1/2--3[2sin® ¥) 2 fC cos K (129)
ha fa==3[4 Usin 2Y 2 fC cos K (130)

hay fa=3/4 U cos®* ¥ 2 fO cos H (131)
the symbols having the same significance as in the preceding discussion
of the tidal forces.
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TERMS INVOLVING 4TH POWER OF MOON'S PARALLAX

102. Formulas (24) and (26) represent the vertical and horizontal
components of the part of the tide-producing foree involving the 4th
power of the moon’s parallax. This part of the force constitutes
only about 2 percent of the total tide-producing force of the moon
and for brevity will be called the lesser force to distinguish it from the
principal or primary part involving the cube of the parallax. The
vertical component Iy /g has its maximum value when z equals zero
and, if numerical values pertaining to the moon and sun when nearest
the earth are substituted in formula (24), the extreme values for this
component are found to be 0.837 1078 for the moon and 0.35Xx 101
for the sun. The horizontal component Fy /g bas its greatest valuo
when z equals about 31.09° and the substitution of numerical values
in_formula (26) gives the extreme value of this component as
0.26 < 107% for the moon or 0.24X 10" for the sun,

103. Substituting in (24) the value of cos 2 from (31), the vertical
component of the lesser force is expanded into four terms as follows:

Foy lg=15/4 (ML) (a/d)* sin Y (cos? ¥—2/5) sin D(5 cos? D—2) . Foo g
+45/8 (M/E)(a/d)*cos Y (cos*Y —4/5) cos D (5cos* D—4) cost Fy g

+45/4 (M/E)(a/d)* sin ¥ cos® ¥ sin D cos? Deos 2t ___... Foy /g
“+15/8 (M) (a/d)* cos® Y cos* D cos 3¢ oo Fos g
(132)

These four terms represent, respectively, long-period, diurnal, semi-
diurnal, and terdiurnal constituents, according to the multiple of the
hour angle # involved in the term.  Fach term is followed by a symbol
which is analogous to those used in the development of the principal
force.

104. Lach term in formula (132) may be further expanded by means
of the rlations given in formulas (39) and (42). Expressing these
terms separately we have—

Foy ‘g=15/4 (ML )(a/d)* sin V(cos® ¥—2/5)X

[3(sin —5/4 sin® I) cos (j—90°)

+5/4 sm® 7 vos (37—90°)] (133)
Foy [9=45/8 (M| E)a/d)* cos ¥ (cos? Y—4/5) X

[5/4 sin T evo? ' cos (X—39)

+ (110 sin- 1 -15 sin' $1) cos? 31 cos (X—7)

i (L—10 cos’ [T 15 cos® 1) sin? $1 cos (X-7)

a4 sin? I sin® 17 cos (X-+37)] (134)
Fop lg=15~ "M ) (a/d) sin ¥ cos? VX

[sin 7 cos' 21 cos (2.X—34--90°)

=3 (cos” 51—2/3) sin I cos? 31 cos (2.X—4~—90°)

43 feos’ JT- 1/3) sin 1 sin? $1 cos (2.X 45— 90°)

~+-sin I sin® 1 cos (X 437 —90°)] (135)
Fog Jg==15/8 (M E)(u'd> eng' VX

[cos® 3T cos 1.V 39

43 cos* 47 sin? 31 cos (3X—)

“+3 cos? 31 ~in T eos (3.X-9)

+-sin® 31 cos 3.7 39)] (136)
105. If the common factir (e/d)* in tormulas (133) to (136 is

replaced by its cquivaloau (i) leid)4, these formulas may be de-
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veloped into numerous constituent terms by a method similar to that
already described in the development of the principal lunar force
(paragraphs 59-69). In the following development constituents of
very small magnitude are omitted. Those given are numbered con-
secutively with the constituent terms of the principal lunar force,

Foo [9=15/4 (M/E)(a/c)* sin ¥ (cos? ¥—2/5) X

(As) [(sin T--5/4 sin® I){3(1-+2¢% cos (s—90°—£)
65) -+9e cos (28— p—90°—¢)
(Ags) +3e cos (p—90°—§)}
(Agr +sin® 1{5/4(1—6e?) cos (35—90°—3¢)
(Ass) +25/4 ¢ cos (4s—p—90°—3¢) }] (137)
Foy [g=45/8 (M]E)(afc)* cos ¥ (cos® Y—4/5) X
(Ago) [sin® T cos? 31{5/4(1—6¢* cos (T'—3s-+h-+3&—)
(An) +25/4 ¢ cos (T'—4s+h~+p-+3t—»)}
+ (110 sin?® 1415 sin* 3 1) cos® 11
(A7) {(142¢*) cos (T—s-+h-+E—v) oo M)
(Az) -+3e cos (I'—28-+h~+p-+t—v)
(Az) +e cos (T+h—p+t—»)}
+ (110 cos? }J+415 cos* 41) sin® 31
(Azg) {(1+2¢%) cos (T+s+h—E—»)
(Azs) +3e cos (T'+2s+h—p—t—»)}] (138)
Fiy [9g=45(8 (M/E)(a/e)* sin ¥ cos® ¥ X
(Azg) [sin T cos* $1{(1—6e?) cos (27— 3s-2h-+90°-+3¢—2)
(Azn) +6¢ cos (2T—4s8+2h-+p+90°-+35—20)
(Azg) +¢ cos (2728 2h—p—90°-+3£—2) }
+ (cos? }1—2/3) sin I cos® 31
(Aze) {3(1+2¢ cos (2T —s+2h—90° -4 £—2p)
(Ag) +9¢ cos (2T —2s+4-2h~+p—90°+£—20) }
+ (cos? $1—1/3) sin I sin® 31
(Aer) {3(1+2¢%) cos 2T+s+2h—90°—£—24)}]  (139)
Fos [g=15/8 (M]E)(a/c)* cos® Y X
(As) [cos® 41{ (1-6¢*) cos (37—3s+3h-+3¢—3p). ... M;
(Ags) ~+5¢ cos (3T—4s+3h+p+3¢8—3»)
(Asy) -+e cos (3.’l’~28+3h-p~~!"180°~|~3$m3v)
(Ags) +127/8 ¢* cos (37— 5s-+3h-+2p-+3£—3v)
(Ags) --75/8 me cos (BT —~4s+45h—p-+3t—3v)}
“+cos® 17 sin? 31
(Agr) {8(1+42¢?) cos (3T—s-+3h-+£t—3v)
(Ags) +9¢ cos BT —2s+3h-+p+£—3p)}] (140)

106. All of the constituent terms in formulas (137) to (140) arve
relatively unimportant but they are listed in table 1 because of their
theoretical interest. The only one of these terms now used in the
prediction of tides is (Ay,) representing the constituent M, which has
a speed exactly three-halves that of the principal lunar constituent
M,. Term (Ay) is of interest in having a speed exactly one-half that
of M, and is sometimes called the true M, to distinguish it from the
composite M; which is used in the prediction of tides and which will
be described later.
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107. For simplicity and the purposes of this publication, the mean
values of the obliquity factors in the terms of the lesser tide-producing
force will be taken as the values pertaining to the time when [ equals
w or 23.452°, excepting that for constituent My and associated terms
the mean has been obtained in accord with the system described in
paragraph 75. The corresponding node factors (paragraph 77) may
then be expressed by the following formulas in which the denominators
are the accepted means of the obliquity factors:

F(Ag) to f(Ag) == (sin I—5/4 sin®1)/0.3192 (141)
FlAg) to f(Agg)==sin1/0.0630 (142)
F(Ag) to f(Ayg) ==sin?l cos*,L/0.1518 (143)
F(A7) to f(Ar)= (110 sin®}J-+-15 sin*}]) cos?}1/0.5873 (144)
F(Aw) to f(Azs) = (1—10 cos*3I--15 cos'l) sin®31/0.2147 (145)
F(Arg) to f(Az)==sin I cos'$1/0.3658 (146)
F(Arg) t0 f(Ag) == (cos*s[—2/3) sin I cos’31/0.1114 (147)
FlA = (cos’s [—1/3) sin 1 sin*4//0.0103 (148)
F(Ag) to f(Age)==f (M) =cos51/0.8758 (149)
F(Ag) to f(Age) =cos*}s I sin®51/0.0380 (150)

Comparing formulas (149) and (78), it will be noted that the node
factor for M, is equal to the node factor for M, raised to the 3/2
power. Computed values applicable to terms Ag, to A are included
in table 14 for years 1850 to 1999, inclusive,

108. For the tabulated constituent coefficients of the terms in
formulas (137) to (140) there are included not only the elliptic and
mean obliquity factors but also such other factors as may be necessary
to permit the use of the general coefficient (3/2 U) of formulas (81)
to (83) for the verlical component of the principal tide-producing
force. The common coefficient (M/E) (a/c)* of formulas (137) to
(140) is equal to U multiplied by the parallax a/e, and the latter
together with the necessary numerical factors is included in the
constituent coefficients in table 2. Formulas (137) to (140) may
then be summarized as follows:

Foo Jg=3/2 U sin Y (cos?Y —2/5) = fC cos LI (151)
Py Jg=3[2 U cos Y(cos?Y —4/5) 2 fC cos I (152)
Fog [g=3/2 Usin ¥ cos?Y 2 O cos I (153)
Fos lg=38/2 U cos®Y 2 fC cos It (154)

109, Tt is to be noted that in formulas (151), (152), and (153), the
maximum value of the latitude factor in each is less than unity, being
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0.4, 0.2754, and 0.3849, vespectively, if the sign of the function is
disregarded. In formula (154), as in the corresponding formulas for
the principal tide-producing force, the maximum value of this factor
is unity. In comparing the relative importance of the various con-
stituents of the tide-producing force the latitude factor should be in-
cluded with the mean coefficient. Attention is also called to the fact
that the relative importance of the constituents involving the 4th
power of the moon’s parallax is greater in respect to the vertical com-
ponent of the tide-producing force than in respect to the height of the
equilibrium tide. In table 2 the mean coeflicients are taken com-
parable in respect to the vertical component of the tide-producing
force and the constituent coefficients pertaining to the lesser force are
therefore 50 percent greater than they would be if taken comparable
in respect to the equilibrium tide,

110. The south and west horizontal components of the lesser tide-
producing force may be obtained by multiplying formula (26) by cos
A and sin 4, respectively. Using the same system of notation as
before, we then have

Fo [g=3]2 (M]|E)(ald)* sin 2z (5 cos® 2—1) cos A (155)
Fys lg==3/2 (M]E)(a/d)* sin 2 (5 cos® z—1) sin 4 (156)

111. By means of the relations expressed in formulas (31), (86),
and (87), the above component forces may be separated into long-
period, diurnal, semidiurnal, and terdiurnal terms as follows:

Bouth component,
Fop lg=—15/4 (M) (a/d)* cos Y (cos?Y —4/5) sin D (5 cos’D—2) (157)
Foy [9=45/8 (M]E) (a/d)* sin ¥ (cos? Y —4/15) cos D(5 cos?D—4) cos ¢

(158)
Fog [g=—45/4 (M| E) (a/d)* cos Y (cos?Y—2/3) sin D cos?D cos 2t (159)
Foy [g==15/8 (M/E) (a/d)* sin ¥ cos’Y cos®DD cos 3¢ (160)

West component,

Foy [g=15/8 (M| E) (a/d)*(cos’Y —4/5) cos D(5 cos?D—4) sint  (161)
By [g=15/4 (M]E) (a/d)* sin 27 sin D costD sin 24 (162)
Foiy [g==15/8 (M]E){(a/d)* cos’Y cos®D sin 31 (163)

112. Comparing formulas (157) to (160) for the south component
force with the corresponding terms of (132) for the vertical com-
ponent, it will be noted that they differ only in the latitude factors
and in sign for two of the terms. With adjustments for these dif-
ferences the summarized formulas (151) to (154) are directly applicable
’ijlolr expressing the corresponding terms in the south component.
Il )US

Foo [g=3/2 U cos Y (cos?Y—4/5) 2 fC cos(F--180°) (164)

Fouy [g==3/2 U sin Y(cos®Y—4/15) Z fC cos E (165)
Foyy [g=3[2 U cos Y(cos’Y—2/3) 2 fC cos(F4180°) (166)
Fuy [9==3]2 Usin ¥ cos’Y 2 fC cos K, (167)

113. For the west component there is no long-period term. Com-
paring (161) to (163) with the corresponding terms of (132), it will
be noted that the -functions are expressed as sines instead of cosines
but they may be changed to the latter by subtracting 90° from each
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argument. With this change and allowing for differences in the
Iatitude factors and numerical coefficients, the summarized formulas
for the west component will be similar to those for the vertical com-
ponent and may be written as follows:

Fow lg=1/2 U (cos?T —4/5) £ fC cos (F—90°) (168)
Frp lg=1/2 Usin 21 Z fC cos (£—90°) (169)
Foss Jy=3[2 U cos*Y = fO cos (F—90°) (170)

114. To obtain the horizontal component of the lesser foree in any
dircetion, the same procedure may be followed as was used for the
prineipal tide-producing foree (paragraphs 85 to 87).  With the same
system of notation we then have

Fopw lg=3/2 U cos Y (cos?Y—4/5) cos A2 fC cos (E4-180°)(171)

Fon Jg=3/2 U Py 2 fC cos (E— X)) (172)
Foo lg=3]2 U Py 2 fC cos (Fi—X3) (173)
Fos l9==8/2 U P; £ fC cos (I1—Xy) (174)
in which
P==[sin?Y (cos? Y —4/15)% cos’? A+ 1/9(cos? Y —4/5)% sin2A4]* (175
Py==cos ¥(cos? Y —2/3)? cos’A++4/9 sin?} sin? AP (176)
Py=1c0s?Y (sin?}" cos®A-}-sin’A) ¥ ¥y

(cos?Y —4/5) sin A

d _— B _.__1 lsd
Xj=tan 3 s Y (cos’) —4/15) cos A (178)
2 sin ¥ sin A
Ve b1 , 7¢
Xy=tan —3(c0s’Y —2/3) cos A (179)
Vy=tan-i, S A (180)

sin ¥ cos A
The proper quadrants for X, X5, and .\ will be determined by the
signs of the numerators and denominators in the above expressions,
these signs being respectively the same as for the sine and cosine of
the corrvesponding angles.

115. Comparing formula (122) for the equilibrium height of the
tide due to the lesser tide-producing foree with formula (24) for the
vertieal component of the foree, it will be noted that they are the
same with the exception that the numerieal coefficient of the former
is onc-third that of the latter. With this change, the summarized
formulas (151) to (154) for the vertical foree may be used to express
the corresponding equilibrium heights.  Following the same system
of notation as before, we have

hyo Ja=1/2 U sin Y{(cos*1—2/5) % fC cos F (181)
hy Ja=1/2 {7 cos Y (cos®Y —4/8) ¥ fC cos It (182)
he Ja==1/2 " sin ¥ cos*} ¥ fC cos I (183)
hyg Ja==1[2 U cos*Y = fC cos B (184)

It is to be noted that the equilibrivm height of the tide due to the
principal tide-producing foree when measured by the mean radius of
the earth as a unit is one-half as great as the corresponding vertical
component force referred to the mean aceeleration of gravity as a
unit, while the equilibrium height due to the lesser tide producing
force similarly expressed is only one-third as great as the corresponding
foree. In table 2, the coeflicients (€7) of the constiiuents derived



HARMCNIC ANALYSIS AND PREDICTION OF TIDES 39

from the lesser foree are made comparable with the others in respect
to the vertical component foree rather than in respect to the equi-

librinm height.
SOLAR TIDES

116. Since the tide-producing force of the sun is similar in action
to that of the moon, the formulas derived for the latter are applicable,
with suitable substitutions, to the solar forees.  Referring to formulas
(62), (63), and (64), let U7 be replaced by U; representing the product
(S/E) (afe)® in which S is the mass of the sunand (¢/e,) its mean parallax.
Also replace e by ey, the eccentricity of the carth’s orbit; I by w, the
obliquity of the ecliptic; s by &, the mean longitude of the sun: and
P by p, the longitude of the solar perigee.  For the solar forces the
ares & and » become zero and all terms representing the evectional
and variational inequalities are omitted.

117. Making the changes indicated the solar constituents are now
expressed in the following formulas. Each term is marked for iden-
tification by the letter B with the same subscript used for the corre-
sponding term in the lunar tide. The usual constituent symbol is
also given for the more important terms. Using the same system of
notation as before,

Solar F fg =3/2 U, (1/2—3/2 sin® ¥) X

(B [@2/3—sin? w){ (14+3/2 %) ......._.permanent term

(By) +-3 ¢, cos (h— py)

{(Bs) +9/2 €% cos (2h—2py)}

(By) +sin? w{(1—~5/2 e*) cos 2h .. ... _____._ _.. Ssa

() +-7/2 e, cos (Bh—p,)

(%) +1/2 e, cos (h-+ p;-+180°)

(By) 41712 €% cos (4h~—2py)}) (185)
Solar Fg Jg=3/2 U, sin 2V X

(By) [sin w cos? Jw{(1—5/2 €4) cos (T—h+90%).__.. P,

(Bys) +7/2 e, cos (T—2h-p,+90°) ... .. ™

(Bie) +1/2 ¢; cos (T— p;—90°)

(B +17/2 ¢ cos (T'—3h--2p,-+90°)}

(B) +-sin 20{ (1/2-+3/4 ¢*) cos (T+h—90°)_ .. ___ . [K,]

(Bsg) +3/4 e, cos (T-p,—90°)

(Bas) +3/4 ¢, cos (I+2h—p,—90°) ... ¥

(Bys) +9/8 ¢* cos (T—h--2p;—900°)

(B2) +9/8 €% cos (T'43h—2p,—90°)}

(B3) +-sin o sin® Lo{ (1—5/2 ¢4) cos (T-+3A—90°)___ &

(Bs2) +7/2 ¢ cos (T-+4h— p,—90°)

(Bss) +1/2 e, cos (T+2h+p,+90°)

(By) 41712 €% cos (T-+-5h—2p,—90°) } (186)
Solar Fg [g==3/2 U, cos® Y

(Bsy) fcos® Lol (1—5/2 €%) cos T v S,

(By) 4712 e cos QT —h+p) ool T,

(By1) +1/2 ¢, cos (2T +h—p,+180°) .. __ .. R,

(Bs2) +17/2 €% cos 2T —2h-+2p,)}

(B +-sin? w{ (1/2-43/4 €) cos (2T +2R) . oo (K]

(«_7348) +3/4 ¢, cos QRT-+h-+p)

(Byo) +3/4 e, cos 27+ 3h—p)

(Formula continued on next page)



40 T, 8. COAST AND GEODETIC SURVEY

(Bgo) +-9/8 €% cos 27-1-2p,)

(Bs1) +-9/8 % cos @T'+4h—2p.)}

(Byg) +sint Lo{ (1--5/2 ¢4) cos (271-4h)

(By) +7/2 e, cos 2T+ Bh—p;)

(Bss) +1/2 ¢ cos 2T+ 3h-pi-+180°)

(Byo) +17/2 % cos 21+ 6h—2p) }] (187)

118. The general coefficient for the solar tide-producing force
differs from that of the lunar force in the basic factor. Irom the
fundamental data in table 1, the ratio of U;/U is found to be 0.4602.
This ratio, which will be designated as the solar factor with symbol §’,
represents the theoretical relation between the principal solar and
lunar tide-producing forces, In computing the constituent coefficients
of the solar terms for use in table 2, the solar factor was included in
order that the same general coefficient may be applicable to both
lunar and solar terms. All of the sumnmarized formulas involving the
coefficients and arguments of table 2 are therefore applicable to both
lunar and solar constituents. Wor the solar constituents, however,
the node factor (f) is always unity since w, the obliquity of the ecliptic,
may be considered as a constant.

119. By substituting solar elements in formulas (137) to (140) the
corresponding solar constituents pertaining to the 4th power of the
sun’s parallax are readily obtained. Since the theoretical magnitude
of the lesser solar tide-producing force is less than 0.00002 part of the
total tide-producing force of moon and sun, it is usually disvegarded
altogether. However, certain interest is attached to three of the
constituents which are considered in connection with shallow water
and meteorological tides (p. 46). These are constituents Ba, 3, and
S5, corresponding respectively to terms Agy, Ay, and A of the lunar
series. They are listed in table 2 with reference letter B and cor-
responding subscripts.  Sa has a speed one-half that of constituent
Ssa, represented by term By of formula (185). Its theoretical argu-
ment as derived from term Ay contains the constant 90°, but being
considered as a meteorological rather than an astronomical consti-
tuent, this constant is omitted from the argument. Constituents 5
and S; have speeds respectively one-half and three-halves that of the
principal solar constituent S,.

120. The arguments of a number of the solar constituents include
the element p, which represents the longitude of the solar perigee.
As this changes less than 2° in a century, it may be considered as
practically constant for the entire century. Referring to table 4 it
will be noted that p, changes from 281.22° in 1900 to 282.94° in 2000.
The value of 282° may therefore be adopted without material error
for all work relating to the present century. With p, taken as a
consbant, it will be found that a number of terms in table 2 have the
same speeds and may therefore be expected to merge into single
constituents. Thus, constituents receiving contributions from more
than one term are as follows: Sa from terms By, By, and By Ssa
from. terms B; and Bs; Py from terms By, and Byy; S, from terms By,
By, and By oy from terms By and Bag; ¢ from terms By and By
5, from terms By and By and B, from terms By and By A few
other solar terms also merge.
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THE M, TIDE

121. The separation of constituents from each other by the process
of the analysis depends upon the differences in their speeds. Constit-
uents with nearly equal speeds are not readily separated unless the
analysis covers a very long series of observations but they tend to
merge and form a single composite constituent, In formuls (63),
terms Adisand Az have nearly equal speeds, one being a little less and the
other a little greater than one-half the speed of the principal lunar
constituent M,. These two terms are usually considered as a single
constituent and 1’eﬁ)resented by the symbol M,. Neglecting for the
present the general coeficient and common latitude factor, the two
terms may be written as follows:

term Ap=1/2 ¢ sin I cos® §I cos (T'—s-+h—p—90°+42t—») (188)
term Ayu=3/2 ¢ sin I cos I cos (T'—s-+h-+p—00°—) (189)

The latter term, having a coeflicient nearly three times as great as
that of the first term, will predominate and determine the speed and
period of the composite tide while the first term introduces certain
mequalities in the coeflicient and argument.

122. For brevity, let 4 and B represent the respective coeflicients
of terms Ay and Ay and let

=== T84 h4p—90°—v (190)

Also let P equal the mean longitude of the lunar perigee reckoned from
the lunar intersection. Then

p=L4 (191)
We then have
term Apg=4 cos (0—2P) _
=4 cos 2P cos 0--A sin 2P sin ¢ (192)
term Ap=08 cos 0 (193)

M= A+ A== (A cos 2P--B) cos 0.4 sin 2P sin 0

— (A2 ]-2AB cos 2P B2} cos [0—~-tan‘“1 T‘fm‘};%}
- MHIQH)%I €08 (T—§-ht-p—90°—p— () (194)
in which "’ .
1/Qu— [1 J44-3/2 L(O‘;i’;[ cos 2P+9/4 CCO%}}]I : (195)

sin 2P
3 cos Ijeos® 2L-Fcos 2P

u=tan™ (196)

If I'is given its mean value corvesponding to o, formula (195) may be
reduced to the form
1/Qu=(2.310--1.435 cos 2P)} (197)

Values of log Q. for each degree of P based upon formula (197) are
given in table 9,
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123. The period of the composite constituent M, is very nearly an
exact multiple of the period of the principal lunar constituent M,,
and for this reason the summations which are necessary for the
analysis of the latter may be conveniently adapted to the analysis of
the former. With other symbols as before, let

0=T—s+h—00°+}f—p (198)
Terms 4, and Ay may then be combined as follows:

term A=A cos (08— P)

== cos P cos 04 sin P sin 0 (199)
term Ay=1D cos (6 P)
=13 ¢os P cos 6— B sin P sin ¢ (200)

lex:/igqy“!"' .4‘133:1: (1‘1“1‘3) cos P cos 6"+‘ (4‘1"’"15) sin P sin ¢
== (A?4-2A48 cos 2P+ B cos [0-«tan“ ﬁ%—?—g tan P>]

_esin I cos®ld

=, s s A0 =) (201)
in which
r ————
@=tan™ f;gg:%r‘]i tan 1 ’) (202)

If Iis given its mean value corresponding to w, formula (202) may
be reduced to the following form which was used for computing the
values of ¢ in table 10.

tan Q==0.483 tan P (203)

124. Formulas (194) and (201) are the same except in the method
of representing the argument. The clements -+p —@, in the first
formula are replaced by +£+4@ in the latter, but it may be shown
from (196) and (202) that

Qut-Q=P=p—t (204)
P—Qu=E£-4Q (205)

The complete arguments are therefore equal but in formula (201)
the uniformly varying clement p has been transferred from the V
of the argument and included in the value of @ where it is treated
as a constant for a series of observations being analyzed. The speed
of the argument as determined by ther remaining part of the V is
theu exactly one-half that of the principal constituent M, and with
this assumption the summations for the latter may be adapted to the
analysis of the former. It is to be noted, however, that the u in
this case has a progressive forward change of nearly 41° cach year.
The true average speed of this constituent is determined by the V
of formula (194) which includes the element .

125. The obliquity factor for the composite M; constituent may be
expressed by the formula sin [ cos*3 1< 1/Q,. According to the work of
Darwin (Scientific Papers by Sir George H. Darwin, vol. 1, p. 39) the
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mean value of this factor is represented by the product sin w cos? 1 w
cos* 11X /2.307, which equals 0.3800%1.52, or 0.5776. When
deriving the node-factor formula for M,, Darwin inadvertently omitted
the factor 4/2.307 and obtained the approximate equivalent of the
following:

sin I cos*y [
sl w cos’) w cos'ly

JMy)= X 1/Qy== 03800 X 1/@, (206)

Comparing the above with formula (75), it will be noted that

FOM) =1(0,) X 1/Q, (207)

Factors pertaining {o constituent M, in tables 13 and 14 are based
upon the above formulas.

126. Because of the omission of the factor +/2.307 from formula
(206), the node factors for M, which have been in general use since
this system of tidal reductions was adopted are about 50 percent
greater than was orviginally intended, while the reeiproeal reduction
factors arc correspondingly too small.  This constituent is relatively
unimportant and no practical difficultics have resulted from the omis-
sion.  The M, amplitudes as reduced from the observational data are
comparable among themselves but should be inercased by 50 pereent
to be on the same basis as the amplitudes of other constituents.  The
predicted tides have not been affected in the least sinee the node
factors and reduction factors are reciproecal and compensating.  The
theoretical mean cocfficient for this constituent with the factor 4/2.307
included is 0.0317; but in order that this cocflicient may be adapted
for use with the tabular node factors when computing tidal forces or
the equilibrium height of the tide, the coeflicient 0.0209 with the
factor 4/2.307 excluded should be used.

127. Although M, is one of the relatively nnimportant constituents
and the error in the node factor has caused no serious difficultics, it
may be questionable whether it should be perpetuated. Tt is obvious,
however, that any change in the present procedure would lead to mueh
confusion unless undertaken by general agreement among all the
principal organizations engaged in tidal work. By making any change
applicable to the analysis of all scries of observations beginning after
a certain speeified date it would be possible to interpret the results on
the basis of the period covered by the observations without the neces-
sity of revising all previously published amplitudes for this constituent.

THE L: TIDE

128. The composite Ly constituent is formed by combining terms
Ay and Ay of formula (64). Negleeting the general coceflicient and
ommon latitude factor these terms may be written

term Agy=1/2 ¢ cos* 11 cos QT —s+2h—p-+180°--26—2p) (208)
term Agy==3/4 ¢ sin® I cos (2T —s~+2h~+p—2v) (200

A reference to table 2 will show that the mean cocefficient of the first
term is about four times as great as that of the latter term.  The first
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term will therefore predominate and determine the speed of the
composite constituent.

129. With other symbols as before, let A and B represent the
respective coefficients of the two terms and 0 the argument of the
first term. We then bave

Ag=A cos 0 (210)
Ay=B cos (0--2P—180°)==—8 cos (0+2P) 211
To=A4u-+ A= (A—B cos 2P) cos 0-}-B sin 2P sin 0
. Bsin 2P
J— 4 R > S 2 73, ) J— 8 T —
= (A2 248 cos 2P -8B cos [:0 tan 1A-B cos 3P
4
=1/2 eﬁ%” % Teos (27— s-2h—p--180°4-26—29—R)  (212)
in which
1/R,= (112 tan? 41 cos 2P-+86 tan? 41)* (213)
e

Betan-t sin 2F (214)

1/6 cot? &f—cos 2P

Values of log B, and B computed from the above formulas are given
in tables 7 and 8, respectively.

180. The obliquity factor for the composite I constituent may be
expressed by the formula cos® 1 1/B,. The mean value of 1/R, is
approximately unity, and in accord with the Darwinian system the
mean for the entire obliquity factor is taken as the product cos*
} w cos* 41, which equals 0.9154 and is the same as the mean value of
the obliquity factor for the principal constituent M, Multiplying
this by the elliptic factor Je gives 0.0251 as the mean constituent
coeflicient.

131, The node factor formula for constituent 1, based upon the
above mean for the obliquity factor is as follows:

JLo)=5g145 X UB =/ (Ms) X 1/R, (215)

Node factors for constituent 1, based upon the above formula are
included in table 14 for the middle of each year from 1850 to 1999,
inclusive. The logarithms of the reciprocal reduction factors covering
the period 1900 to 2000 are contained in table 13.

LUNISOLAR K AND I, TIDES

182. Lunar diurnal term A, of formula (63) and solar diurnal
term. By of formula (186) have the same speed.  Together they form
the lunisolar K, constituent. Also, lunar semidiurnal term A4 of
formula (64) and solar semidiurnal term By of formula (187) have
speeds exactly twice that of constituent K, and together form the
lunisolar K, constituent. In order that the solar terms may have
the same general cocfficient as the lunar terms, the solar factor
{7,/U, which will be designated by the symbol 57, will be transferred
from the general coeflicient of the solar terms and included in the
constituent coeflicients. Then, neglecting the general coeflicient and
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latitude factors common to the terms combined, we have the following
formulas in which numerical values from table 1 have been &mb«
stituted for constant quantities.
term Ag= (1/2-+3/4e?) sin 21 cos (T+h-—90°—1)

=10.5023 sin 21 cos (T h—90°—y) (216)

1/2-F8/4e0)S” sin 2 w cos (T} h—90°)

term £y

).1681 cos (I h-—90°) (217)
term A== (1/2--3/4¢%) sin*l cos (21} 2h—2»)
=0.5023 sin/ cos (27-}-2h-—2y) (218)
term By==(1/2-43/4e1) 8" sin® w cos (27-}-2h)
=0.0365 cos (7'-+2h) (219)

133. Taking first the dinrnal terms, let A vepresent the lunar co-
Hioir\nt 0.5023 sin 2/ and let B Tepr esent the sohn coefficient 0.1681.
\\ ¢ then have

Aggm= A cos (T} h—90°—)
-------- = cos v cos (T~ [ h—90°) -+

Boy= 1 cos (T-+h-90°)

K= (A cos v+ 8) cos (14h—
= (APR2A8 cos vl B (‘OS[
= cos (T h— 9()0»»»11’)

in which

== (0.2523 sin® 27-1-0.1689 sin 27 cos »--0.0283)7 293)
, o Asiny sin 24 sin »

e 7Y ¢ R WGV
Acos vk BT win 20 cos p-b-0.5347

Va]ncs of v/ for each degree of NV, which is the longitude of the
moon’s node, are included in table 6.

134. The oblu uity factor for K will be taken to include the entire
coefficient (A% "/1[) co8 y - 37 )z and its mean value will be taken as
the mean of (hv product (A*-2A4F cos v + B)Y cos »’,

From (224) we may obtain

cos v = (A cos v 1) [(A*}-2A8 cos p-i- B2} (225)
Then for mean value of coeflicient of &,
[(A2 ] 2A8 cos v} Bt cos v ]y=[A (z(m x/ B3,
=[0.5023 sin 24 cos p--0.1681]y==0.5305 (226)

the numerical mean for sin 27 cos » being obtained from formula (68).
Iror the node factor of K divide the coefficient of (222) by its mean
value and obtain

FUSL) == (0.2523 sin? 20-4-0.1689 sin 27 cos »--0.0283)4/0.5305
(0 8965 sin? 27-+0.6001 sin 27 cos »-F0.1006) (227>
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The node factors for the middle of each year 1850 to 1999 are included
in table 14. Logarithms of the reciprocal reduction factors for each
tenth of a degree of I are given in table 12.

135. The semidiurnal terms Ay and By may be combined in a
similar manner. Letting A represent the lunar coefficient 0.5023
sin?I and B the solar coefficient 0.0365, we have

A=A cos QT+2h—2v)

=A cos 2v cos (2T-2h)-+.A sin 2v sin (27-2h) (228)
By=B cos (2T-2h) (229)
K,y=(A cos 2v-+B) cos 2T42h)+ A sin 2v sin (2T+2h)

= (A2} 2AB cos 2v-+BHt cos LQ T-+-2h— tan"‘zé%s%l—ffﬁ

=), cos QT 2h—2v"") (230)

in which

C,= (A% 2AB cos 2v--B%3

= (0.2523 sin® [40.0367 sin? I cos 2»-+0.0013)% (231)
9,7 —tan-1 _Asin2y tan-! sin 21 sin 2

A cos 2v-+B sin* 1 cos 2v-+-0.0727 (232)

Values for 2»” for each degree of NV are included in table 6.

136. The obliquity factor for X, will be taken to include the entire
coefficient (A2+2A8 cos 2v-+B% and its mean value will be taken
as the mean of the product (A4*4-248 cos 2v-+DB%% cos 2.
From (232)

cos 20" = (A cos 2w+ B)[(A* 248 cos 2v-- B (233)
Then for the mean value of coefficient of K,

[(A>+2A4B cos 2v+B% cos 2" }y==[A cos 2v- Bl
=1[0.5023 sin* I cos 2v-+0.0365],=0.1151 (234)

the numerical mean for sin? I cos 2» being obtained from formula
(71). For the node factor of K, divide the coefficient of (230) by its
mean value and obtain
F(Ky) = (0.2523 sin* 1-+0.0367 sin? I cos 2»-+0.0013)% /021151

== (19.0444 sin* 1+2.7702 sin? [ cos 2»-1-0.0981)* (235)
Sce table 14 for node factors and table 12 for reciprocal reduction
factors.

METEOROLOGICAL AND SHALLOW.WATER TIDES

187. In addition to the elementary constituents obtained from the
development of the tide-producing forces of the moon and the sun,
there are a number of harmonic terms that have their origin in
meteorological changes or in shallow-water conditions. Variations
in temperature, barometric pressure, and in the direction and force
of the wind may be expected to cause fluctuations in the water level.
Although in general such fluctuations are very irregular, there are
some scasonal and daily variations which oceur with a rough periodic-
ity that admit of being expressed by harmonic terms. The meteoro-
logical constituents usually taken into account in the tidal analysis are
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Sa, Ssa, and B; with periods corresponding respectively to the tropical
year, the half tropical year, and the solar day. These constituents
are represented also by terms in the development of the tide-producing
force of the sun but they are considered of greater importance as
meteorological tides. Ssa occurs in the development of the principal
solar force while Sa and S; would appear in a development involving
the 4th power of the solar parallax (par. 119). 1In the analysis of tide
observations both Sa and Ssa are usually found to have an appreciable
affect on the water level. Constituent 8, is relatively of little im-
portance in its effect on the height of the tide but has been more
noticeable in the velocity of off-shore tidal currents, probably as a
result of periodic land and sea breezes.

138. The shallow-water constituents result from the fact that when
a wave runs into shallow water its trough is retarded more than its
crest and the wave loses its simple harmonie form.  The shallow-water
constituents are classified as overtides and compound tides, the over-
tide having a speed that is an exact multiple of one of the elementary
constituents and the compound tide a speed that equals the sum or
difference of the speeds of two or more elementary constituents.

139. The overtides were so named because of their analogy to the
overtones in musical sounds and they may be considered as the
higher harmonies of the fundamental tides, The only overtides
usually taken into account in tidal work are the harmonies of the
principal lunar and solar semidiurnal constituents M, and S,, the lunar
series being designated by the symbols M,, M, and My, and the solar
sertes by 8, 8, and 8¢ The subscript indicates the number of
periods in the constituent day.  These overtides with their argu-
ments and speeds are included in table 2a, the arguments and speeds
being taken as exact multiples of those of the fundamental con-
stituent.  There are no theoretical expressions for the coefficients of
the overtides but it is assumed that the amplitudes of the lunar series
undergo variations due to changes in the longitude of the moon’s
node which are analogous to those in the fundamental tide. The
node factors for M,, M, and Mg, respectively, are taken as the
square, the cube, and the fourth power of the corresponding factor
for M,. Tor the solar terms this factor is always zcro.

140. Compound tides were suggested by Helmholtz's theory of
sound waves. Innumecrable combinations are possible but the prin-
cipal elementary constituents involved are M,, S, N,, K, and O,.
Table 2a ineludes the compound tides listed in International Hydro-
graphic Bureau Speeial Publication No. 26, which is a compilation of
the tidal harmonic constants for the world., The argument of a
compound tide equals the sum or difference of the areuments of the
clementary constituents of which it is compounded. The node
factor is taken as the product of the node factors of the same con-
stituents.  Table 2a contains the arguments, speeds, and node
factors of these tides.

141, Omitted from table 2a ave a number of compound tides which
have the same speeds as clementary constituents ineluded in table 2.
Thus, 2085, compounded by formula 2M,—8,, has the same speed as
constituent g, vepresented by term Ay of formula (64).  Considered
as a compound tide there would be a small difference in the u of the
argument and also in the node factor.  Sinee there is no practical
way ol separating the elementary constituent from the compound
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tide of the same speed, this has been treated solely as an elementary
constituent. Constituent MSf represented by term 4; of formula (62)
has the same speed as a compound tide of formula S,—M,.  "This con-
stituent is relatively unimportant and it makes little difference whether
treated as an elementary or a compound tide. Following the pre-
vious practice in this office it is treated in the harmonic analysis as a
compound tide with corresponding argument and node factor.  When
included in the computation of tidal forces, however, the argument
and node factor indicated in table 2 should be used.



ANALYSIS OF OBSERVATIONS

HARMONIC CONSTANTS

142. In the preceding discussion it has been shown that under the
equilibrium theory the height of a theoretical tide at any place can be
expressed mathematically by the sum of & number of harmonic terms
involving certain astronomical data and the location of the place.
Tt has also been pointed out that for obvious reasons the actual tide
of nature does not conform to the theoretical equilibrium tide.  How-
ever, the tide of nature can be conceived as being composed of the
sum of & number of harmonic constituents having the same periods
as those found in the tide-producing force. Although the complexity
of the tidal movement is too great to permit a theoretical computation
based upon astronomical conditions only, it is possible through the
analysis of observational data at any place to obtain certain constants
which can be introduced into the theoretical formulas and thus adapt
them for the computation of the tide for any desired time.

143. In the formulas obtained for the height of the equilibrium
tide each constituent term consists of the product of a coefficient by
the cosine of an argument. For corresponding formulas expressing
the actual height of the tide at any place, the entire theoretical coefli-
cient including the latitude factor and the common general coeflicient
is replaced by a coefficient determined from an analysis of observa-
tional data for the station. This tidal coeflicient, which is known as
the amplitude of the constituent, is assumed to be subject to the same
variations arising from changes in the longitude of the moon’s node
as the coefficient of the corresponding term in the equilibrium tide.
The amplitude pertaining to any particular year is usually designated
by the symbol 2 while its mean value for an entire node period 1is
ropresented by the symbol 77, Amplitudes derived directly from an
analysis of a limited series of observations must be multiphied by the
reduction factor F' (par. 78) to obtain the mean amplitudes ol the
harmonic constants. For the prediction of tides, the mean ampli-
tudes must be multiplied by the node factor £ (par. 77) to obtain the
amplitudes pertaining to the year for which the predictions are to
be made.

144. The phases of the constituents of the actual tide do not in
oeneral coincide. with the phases of the corresponding constituents
of the equilibrium tide but there may be lags varying from 0 to 360°.
The interval between the high water phase of an equilibrium con-
stituent and the following high water of the corresponding constituent
in the actual tide is known as the phase lag or epoch of the constituent
and is represented by the symbol « (kappa) which is expressed in
angular measure. The amplitudes and epochs together are called
harmonie constants and are the quantities sought in the harmonic
analysis of tides. Hach locality has a separate set of harmonic con-
stants which can be derived only from observational data but which
remain the same over a long period of time provided there are no
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physical changes in the region that might affect the tidal conditions.
145, 1f we let y, equal the height of one of the tidal constituents as
referred to mean sea level, it may be represented by the following

formula:
Y= fI cos (F—«)==fH cos (V+4u-«) (236)

The combination symbol V--u is the equivalent of /£ and represents
the argument or phase of the equilibrium constituent.

146. Formula (236) is illustrated graphically in figure 7 by a
cosine curve with amplitude fI{. The horizontal line represents
mean sea level and the vertical line through 7' may be taken to indi-
ate any instant of time under consideration. If the point M repre-
sents the time when the constituent argument equals zero, the interval
from M to the following high water of the constituent will be the
epoch «x. The interval from the preceding high water to A is
measured by the explement of « which may be expressed as —«.
The phase of the constituent ment at time 7" is reckoned {rom M
and is expressed by the symbol (V-lu). The phase of the constit-
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FIGURE 7.

uent itsell at this time is reckoned from the preceding high water
and therefore ecquals (V-4-u—«).

OBSERVATIONAL DATA

147. The most satisfactory obscrvational data for the harmonic
analysis are from the record of an automatic tide gage that traces a
continuous curve from which the height of the tide may be scaled at
any desived interval of time.  This record is usually tabulated to give
the height of the tide at each solar hour of the series in the kind of
time normally used at the place. It is important, however, that the
time should be accurate and that the same system be used for the
entire series of observations regardless of the fact that daylight saving
time may have been adopted temporarily for other purposes during a
portion of the year. When the continuous vecord from an automatic
gage is not available, hourly heights of the tide as observed by other
methods may be used. The record should be complete with ecacly
hour of the series represented.  If a part of the record has been lost,
the hiatus may be filled by interpolated values; or, if the gap is very
extensive, the record may be broken up into shorter series whiel do
not include the defective portion.,
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148. If hourly heights have not been observed but a record of high
and low waters is available, an approximate evaluation of the more
important constituents may be obtained by a special treatment.
The results, however, are not nearly as satisfactory as those obtained
from the hourly heights.

149. Although the hourly interval for the tabulated heights of the
tide has usually been adopted as most convenient and practicable for
the purposes of the harmonic analysis, a greater or less interval might
be used. A shorter interval would cause a considerable increase in
the amount of work without materially increasing the accuracy of the
results for the constituents usually sought. However, if an attempt
were made to analyze for the short period seiches a closer interval
would be necessary. An interval greater than one hour would lessen
the work of the analysis but would not be sufficient for the satisfactory
development of the overtides.

150. In selecting the length of series of observations for the purpose
of the analysis, consideration has been given to the fact that the pro-
cedure is most effective in separating two constituents from each other
when the length of series is an exact multiple of the synodic period of
these constituents. By synodic period is meant the interval between
two consecutive conjunctions of like phases. Thus, if the speeds of
the two constituents in degrees per solar hour are represented by a and
b, the synodic period will equal 360°/ (a~b) hours. If there were only
two constituents in the tide the best length of series could be easily
fixed, but in the actual tide there are many constituents and the
length of series most effective in one case may not be best adapted to
another case. It is therefore necessary to adopt a length that is a
compromise of the synodic periods involved, consideration being
given to the relative importance of the different constituents.

151. Fortunately, the exact length of series is not of essential im-
portance and for convenience all series may be taken to include an
mtegral number of days. Theoretically, different lengths of series
should be used in seeking different constituents, but practically it is
more convenient to use the same length for all constituents, an excep-
tion being made in the case of a very short series. The longer the
series of observations the less important is its exact length. Also the
greater the number of synodic periods of any two constituents the
more nearly complete will be their separation from each other. Con-
stituents like S; and K, which have nearly equal speeds and a synodic
period of about 6 months will require a series of not less than 6 months
for a satisfactory separation. On the other hand, two constituents
differing greatly in speed such as a diurnal and a semidiurnal con-
stituent may have a synodic period that will not greatly exceed a day,
and a moderately short series of observations will include a relatively
large number of synodic periods. For this reason, when selecting the
length of series no special consideration need be given to the effect of
a diurnal and a semidiurnal constituent upon each other.

152. The following lengths of series have been selected as conform-
ing approximately to multiples of synodic periods involving the more
important constituents-—14, 15, 29, 58, 87, 105, 134, 163, 192, 221, 250,
279, 297, 326, 355, and 369 days. The 369-day series is considered as
a standard length to be used for the analysis whenever observations
covering this period are available. This length conforms very closely
with multiples of the synodic periods of practically all of the short-
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period constituents and is well adapted for the elimination of seasonal
meteorological effects.  When observations at any station are avail-
able for a number of years, it is desirable to have separate analyses
made for different years in order that the results may be compared
and serve as a check on each other.  Although not essential, there are
certain conveniences in having each such serics commence on January
L of the year, regardless of the fact that series of consecutive years
may overlap by several days because the length of series is a little
longer than the calendar year,

153. If the available observations cover a period less than 369 days,
the next longest series listed above which is fully covered by the
observations will usually be taken, any extra days of observations
being rejected.  However, if the observations lack only a few hours
of being cqual to the next greater length, it may be advantageous to
extrapolate additional hourly heights to complete the larger servies.
The 29-day series is usually considered as a minimum standard for
short series of observations. This is a little shorter than the synodical
month and a little longer than the nodical, tropical, and anomalistic
months. 1t is the minimum length for a satisfactory development of
the more important constituents.

154, For observations of less than 29 days, but more than 14 days,
provisions are made for an analysis of a 14-day series for the diurnal
constituents and a 15-day series for the semidiurnal constituents, the
first conforming to the synodic period of constituents K, and O,
and the latter to the synodic period of My and S,. Through special
treatment involving a comparison with another station, it is possible
to utilize even shorter series of observations. This treatment is
rarely required in case of tide observations but is useful in connection
with tidal currents where observations may be limited to only a few
days.

HSUMMATIONS FOR ANALYSIS

155. The first approximate separation of the constituents of the
observed tide is accomplished by a system of summations, separate
summabions being made for all constituents with incommensurable
periods. Designating the constituent sought by A, assume that the
entire series of obscrvations is divided into periods equal to the period
of A and each period is subdivided into a convenient number of equal
parts, the subdivisions of each period being numbered consecutively
beginning with zero at the initial instant of cach period.  All subdivi-
sions of like numbers will then include the same phase of constituent
A but different phases for all other constituents with incommensurable
speeds.  The subdivisions will also include i

irregular variations arising
from meteorological causes. By summing and averaging separately
all heights corresponding to each of the numbered subdivisions over a
sufficient length of time, the effects of constituents with incommensur-
able periods as well as the meteorological variations will be averaged
out leaving intact constituent A with its overtides.

156, The principle just described for separating constituent A
from the rest of the tide is applicable if the original periods into which
the series of observations is divided are taken as some multiple of
constituent A period. In general practice, that multiple of the
constituent period which is most nearly equal to the solar day is taken
as the unit.  This is the constituent day and includes one or more



HARMONIC ANALYSIS! AND PREDICTION OF TIDES 53

periods according to whether the constituent is diurnal, semidiurnal,
ete.  The constituent day is divided into 24 equal parts, the booununo’
of each part being numbered consecutively from 0 to 23 and these are
known as constituent hours,

157. To carry out strictly the plan described above would require
sopm':xt’o tabulations of the heights of the tide at different intervals
for all constituents of i mcozmn(xmur able periods, a procedure involving
an enormous amount of work. In actual practice the tabulated solar
hourly heights are used for al 1 of the summations, these heights being
assigned to the nearest constituent hour. Corrections are alterwards
applied to take account of any systematic error in this approximation.,

158. There are two systems for the distribution and assignment of
the solar hourly hmOth which differ slightly in detail.  In the system
ordinarily used and which is sometimes called the standard system,

sach solar hourly height is used once, and once only, by being assigned
to its nearest constituent hour. By thls sy%t,om some con%timont
hours will be assigned two conseeutive solar hourly heights or receive
no assignment a,(‘('(mlmw to whether the constituent (lw is longer or
shorter than the solar da,y In the other system of distribution, each
ituent hour reeeives one and only one solar hourly height neces-
sitating the oceasional rejection or double assignment t of a solar hourly
]1(\1;111‘ The difference 1in the results obtdm(‘(l from the two systems

s practically negligible but the first system is generally used as it
af fords a quick method of checking the summations.

STENCILS

159. The distribution of the tabulated solar hourly heights of the
tide for the purpose of tho harmonic analysis is cmw(m_l(sntly ACCOM-
plished by a system of stencils (fig. 10) which were devised by 1. P.
Shidy of the Coast and Geodetic E“)l’l'L‘V(‘V carly in 1885 (Report of
U. 5. Coast and Geodetic Survey, 1893, vol. I, p. 108). Although
the original construction of the stencils involves considerable worls,
they ave serviceable for many years and have resulted in a very great
saving of labor. These stencils are cut from the same forms which
are used for the tabulation of the hourly heights of the tide and 106
sheets are vequired for the summation of a \>(>€)»da,y series of observa-
tions for a single constituent.  Separate sets are provided for different
constituents.  Constituents with commensurable periods are included
in a single summation and no stencils are required for constituents,
Sl, Sg, 54, ete.

160. The use of the stencils makes a standardized form for the
tabulation of the hourly heights essential, This form (fig. 9) is a
sheet 8 by 104 inches, with spaces arranged for the tabulation of the
24 hourly heights of cach day in <L vertical column, with 7 days of
record on each page.  The hours of the day are numbered consceu-
tively from O% at ml(lmoi tto 23" at 11 p. m. When the tabulated
heights are entered, cach dav is indicated by its calendar date and
also by a serial number commene ing with 1 as the first day of series.
The days on the steneil sheets are numbered serially to (’m;(‘%pond
with the tabulation sheets and may be used for any series regardless
of the calendar dates,

161. The openings in the stencils are numbered to indicate the
constituent hours that correspond most closely with the times of the
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height values showing through the openings when the steneilis applied
to the tabulations.  Openings applylng to the same constituent hour
are conneeted by a ruled line which elearly indicates to the eye the
tabular heights which are to be summed together.  For convenienee
in_construction two steneil sheets are prepared for cach page of
tabulations, one sheet providing for the even constituent hours and
the other sheet for the odd constituent hours.

162. The steneils ave adapted for use with tabulations made in
any kind of time provided the time used is uniform for the entire
series of observations.  For convenience the tabulations ave usually
made in the standard time of the place. The series to be analyaed,
however, must commence with the zero hour of the day and this is
also taken as the zero constituent hour for cach constituent.  Sue-
cessive solar hours will fall either carlicr or later than the correspond-
ing constituent hour according to whether the constituent day is
longer or shorter than the solar day.

163. For the construction of the steneils it is neeessary to caleulate
the constituent hour that most nearly coincides with each solar hour
of the series.

Let a=speed or rate of change in argument of constituent sought
in degrees per solar hour.
p=number of constituent periods in constituent day; 1 for
diurnal tides, 2 for semidiurnal tides, cte.
sh=number of solar hour reckoned from 0 at beginning of each
solar day.
number of solar hour reckoned from 0 at beginning of
series.
dos=day of series counting from 1 as the first day.
ch=number of constituent hour reckoned from 0 at beginning
of each constituent day.
chs=number of constituent hour reckoned from 0 at beginning
of series.

shs

Then
. . 360 | o
1 constituent period== o solar hours. (237)
1 constituent day - solar hours. (238)
" - 16p o
1 constituent hour = solar hours. (239)
1 solar hour 21%—7—) constituent hours. (240)
Therefore, '
@ a .
hs) == i () = 124 (d0g) = 1Y 4 (Sh 241
(chs) mp(shs) ]51)[ 4 { (dos)— 1} (sh)] (241)

164. The above formula gives the constituent hour of the series (chs)
corresponding to any solar hour of the series (shs). The observed
heights of the tide being tabulated for the exact solar hours of the
day, the (shs) with which we are concerned will represent suceessive
integers counting from 0 at the beginning of the series. The (chs)
as derived {rom the formula will generally be a mixed number.  As
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it is desired to obtain the integral constituent hour corresponding
most nearly with each solar hour, the (chs) should be taken to the
nearest integer by rejecting a fraction less than 0.5, or counting as
an extra hour a fraction greater than 0.5, or adopting the usual rule
for computations if the fraction is exactly 0.5. The constituent
hour of the constituent day (eh) required for the construction of the
stencils may be obtained by rejecting multiples of 24 from the (chs).

165. In the application of the above formula it will be found that the
integral constituent hour will differ from the. corresponding solar
hour by a constant for a suceession of solar hours, and then,with the
difference changed by one, it will continue as a constant for an-
other group of solar hours, ete. This fact is an aid in the prepara-
tion of a table of constituent hours corresponding to the solar hours
of the series, as it renders it unnecessary to make an independent
caleulation for cach hour. Instead of using the above formula for
cach value the time when the difference between the solar and con-
stituent hours changes may be determined.  The application of the
differences to the solar hours will then give the desired constituent
hours,

166. Formula (241) is true for any value of (shs), whethoer integral or
fractional. Tt represents the constituent time of any instant in the
series of observations in terms of the solar time of that same instant,
both kinds of time being reckoned from the beginning of the servies
as_the zero hour. The difference between the constituent and (he
solar time of any instant may therefore be expressed by the following
formula:

Differences== T%) (shs) ~ (shs)= (242)

167. If the constituent day is shorter than the solar day, the speed a
will be greater than 15p, and the constituent hour as rockoned from
the beginning of the series will be greater than the solar hour of the
same instant. If the constituent day is longer than the solar day
the constituent hour at any instant will be less than the solar hour
of the same instant. At the beginning of the series the difference
between the constituent and solar time will be zero, but the difference
will inerease unifornly with the time of the series.  As long as the
difference does not exceed 0.5 of an hour the integral constituent
hours will be designated by the same ordinals as the integral solar
hours with which they most nearly coincide.  Differences between
0.5 and 1.5 will be represented by the integer 1, differences between
1.5 and 2.5 by the integer 2, ete. If we let d vepresent the integral
difference, the time when the difference changes from (d—1) to d,
will be the time when the difference derived from formula (242)
equals (d—0.5). Substituting this in the formula, we may obtain

oy thp . N
(\IL(\>~(IN15/) ((l’*’-*().d) (21»))
in which (shs) vepresents the solar time when the integral difference
between the constituent and solar time will change by one hour from
(d=1) to d. By substituting successively the integers 1, 2, 3, ote.,
for d in the formula (243) the time of cach change throughout the
series may be obtained. The value of (shs) thus obtained will
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generally be a mixed number; that is to say, the times of the changes
will usually come between integral solar hours. The first integral
solar hour after the change will be the one to which the new difference
will apply if the usual system of distribution is to be adopted. In
this case we are not concerned with the exact value of the fractional
part of (shs) but need note only the integral hours between which
this value falls.

168. 1f, however, the second system of distribution should be
desired, it should be noted whether the fractional part of (shs) is
greater or less than 0.5 hour. With & constituent day shorter than
the solar day and the differences of formula (242) increasing positively,
the application of the differences to the consecutive solar hours will
result in the jumping or omission of a constituent hour at each change
of difference. Under the second system of distribution each of the
hours must be represented, and it will therefore be necessary in this
case to apply two consceutive differences to the same solar hour to
represent two consecutive constituent hours. The solar hour selected
for this double use will be the one occurring nearest to the time of
change of differences. If the fractional part of the (she) in (243) is
less than 0.5 hour, the old and new differences will both be applied to
the preceding integral solar hour; but if the fraction is greater than 0.5
hour the old and new differences will be applied to the integral solar
hour following the change.

169. With a constituent day longer than the solar day and the differ-
ences of formula (242) increasing negatively, the application of the
differences to the consecutive solar hours will result in two solar
hours being assigned to the same constituent hour at each change of
differences. Under the second system of distribution this must be
avoided by the rejection of one of the solar hours. TIn this case the
inteeral solar hour nearest the time of change will be rejected, since
at the time of change the difference between the integral and the true
difference is a maximum. Thus, if the fractional part of the (shs),
is less than 0.5 hour, the preceding solar hour will be rejected; but
if the fraction is greater than 0.5 hour the next following solar hour
will be rejected. .

170. Table 31, computed from formula (243), gives the first solar
hour of the group to which each difference applies when the usual
system of distribution is adopted. Multiples of 24 have been rejected
from the differences, since we are concerned only with the constituent
hour of the constituent day rather than with the constituent hour
of the series, and these differences may be applied dirvectly to the solar
hours of the day. Ior convenience equivalent positive and negative
differences arve given, By using the negative difference when it does
not exceed the solar hour to which it is to be applied, and at other
times using the positive difference, the necessity for adding or
rejecting multiples of 24 hours from the results is avoided.

171. The tabulated solar hour is the integer hour that immediately
follows the value for the (shs) is formula (243). An asterisk (%)
indicates that the fractional part of the (shs) exceeds 0.5, and that
the tabular hour is therefore the one nearest the exact value of (shs).
It the second system for the distribution of the hourly heights is
adopted, the solar hours marked with the asterisk will be used with
both old and new difference to represent two constituent hours, or
will be rejected altogether according to whether the constituent day

-
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is shorter or longer than the solar day. I the tabular hour is un-
marked, the same rule of double use or rejection will apply to the
untabulated solm‘ wour immediately preceding the tabular unmarked
hour. For the ordinary stencils no &ttont,lou need be given to the
asterisks. By the formula constituents with commensurable periods
will have the same tabular values g, and no distinction is made in the
construction of the stencils. Thus, stencils for constituent M serve
not only for M, but also for M,, ﬁ'\/ﬂ, MG, elbe.

172. For the construction of a set ol stencils for any constituent a
preliminary set of the hourly height forms is prepared Wlih days of
series numbered consecutively beginning with 1 and each hourly
height space numbered with its cmwtltucnt hour as derived by the
di ﬂomnmm in table 31, The evon and odd constituent hours are then
transferred to separate sets of forms and the marked spaces cut out.
In the Coast and Geodetic Survey this is done by a amuU. machine
with a punch operated by a hand lever. Spaces corresponding to the
same constituent hour ‘m\ connected by ruled lines which are num-
bered the same as the hours represented. Black ruling with red
nunlb(\,ung is recommended, the red emphasizing the distinetion
between these numbers and the tabulated hourly heights which are
to be summed.

173. When in use the stencils are placed one at a time on the sheets
of tabulated heights, with days of series on stencils matching those on
the tabulations, and all heights on the page corresponding to each
constituent hour are then summed separately.  For constituent S no
stencils are necessary as the constituent hours in this case are identical
with the solar hours. ¥or constituents K, P, B, and T with speeds
differing little from that of &, the lines joining the hourly spaces
frequently become horizontal and the marginal sum prey 1(>u~>lv ob-
tained for constituent & becomes immec miolv available for the sum-
mation at hand, Tn these cases a hole in the nmrm,n. of the stencil
f(}){’ the sum veplaces the imloc for the individual heights covered by
the sum.

BECONDARY STENCILS

174. Aflter the sums for cortain principal constituents have b(‘on ob-
tained by the stencils deseribed in the prec eding section, which for con-
venience will be called the primary s stencils, the summations for
other constituents may be abbrevi aivd bv the use of secondary sten-
cils which are designed to momu; he hourly page sums already ob-
tained !()1' one constituent into now <0mbma(1(ms conforming to the
periods of other constituents.  Certain irregularities are 111(1’0(111('(\(1
by the pmww but in a long series, such as 369 days, these are for the
most part (‘lumnatml, and the resulting values for the harmonie con-
stants compare favorably with those obtained by use of the primary
stencils directly, the differences in the resul ts obtained 1)V the two
methods 'i eing n(whﬂtb e. For short series the irregularitics are less
likely to be (\]umnatf‘(l, And since th(‘ labor of summing for such a
series is relatively small, the abbwvmtm form of %ummincr s not
recommended.  As the lono b oof series inereases the saving in labor
by the use of the see omhuy stencils inereases, whlle the irre oulautms
due to the short process tend to disappear. It is believed that the
use of t,im secondary stencils will be found advantageous for all series
more than 6 months in length.
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175. In the primary summations there arve obtained 24 sums for each
page of tabulations, representing the 24 constituent hours of & con-
stituent day. In general ench sum will include 7 hourly heights, and
the average interval between the first and last heights will be 6 con-
stituent days. A few of the sums may, however, include a greater
or less number of hourly heights within limits which may be a day
greater or less than 6 constituent days.

176. Let the constituent for which summations have been made by
use of the primary stencils be designated as A and the con-
stibuent which is to be obtained by use of the secondary stencils as
5. Ior convenience let it be first assumed  that  the
heights included in the sums for constituent A refer to the exact
Ahours.  This assumption is  true for constituent 5 but
only approximately true for the other constituents. It is now pro-
posed to assign each hourly page sum obtained for constituent A to
the integral B-hour with which it most nearly coincides,
Constituent A and constituent B-hours separate at a uniform rate, and
the proposed assignment will depend upon the relation of the hours
on the mididle day of each page of tabulations.  The tabulated hourly
heights on each full page of record run from zero (0) solar hour on the
first dav to the 23d solar hour on the seventh or last day of the page.
The middle of the record on each such page is therelore at 11.5 solar
hours on the fourth day, or 83.5 solar hours from the beginning of the
page of record.

177. Let @ and b represent the hourly speeds of the constituents A
and B, respeetively, and p and pg their respective subseripts, and let
n equal the number of the page of tabulation under consideration,
heginning with number one as the fivst page.

The middle of page » will then be

[168(n—1) 4-83.5] or (168n—84.5) solar hours (244)

from the beginning of the series.
Sinee one solar hour equals a/15p constituent A-hours (formula
240), the middle of page n will also correspond to

(168n - 84.5)tig-]j):constituunt A-hours (245)

from the beginning of the series.

As there arve 24 constituent hours in cach constituent day, the
middle constituent A-day of cach page will commence 12 constituent
A-hours earlier than the time represented by the middle of the page,
or at

[(168n—84.5) 1?)]) —12] constituent A-hours (246)

from the beginning of the scries.

178. The 24 integral constituent A-hours of the middle constituent
day of the page will therefore be the integral constituent A-hours
which immediately follow the time indicated by the last formula.
The numerical value of this formula will usually be a mixed number.
Let f equal the fractional part, and let m be an integer representing
the number of any integral constituent hour according to its order in
the middle constituent day of each page.  For each page m will have
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successive values from 1 to 24. The integral constituent A-hours
falling within the middle constituent day of each page of tabulations
will then be represented by the general formula.

[(168n— 84.-.5)]%})» —12—f-+-m] constituent A-hours (247)

from the beginning of the scries. ,
179. The relation of the lengths of the constituent A- and constit-
uent B-hours is given by the formula
} . pb . : .
1 constituent A~h()ur::i—)»*(»iconsmtuent B-hours (248)
21e
The constituent B-hour corresponding to the integral constituent
A-hour of formula (247) is thervefore

[(168n—84 .5)41 e} e f o} m]jp-{)'- constituent B-hours (249)
A 1

5p PG
from the beginning of the series.

The last formula will, in general, represent a mixed number. The
integral constituent B-hour to which the sum for the constituent .-
hour is to be assigned will be the nearest integral number represented
by this formula. Let g be a fraction not greater than 0.5, which,
applied cither positively or negatively to the formula, will render it
an integer,

180. The assignment of the hourly page sums for constituent -
hours to the constituent B-hours may now be represented as follows

multiples of 24 hours being rejected: 7
[(168n— 84.5)1'%'1‘ —12—f-+m—multiple of 24] constituent A-hour
1op (250

sum to be assigned to

1680 —84 5)-C_qo__ g1, Db
[{(168n 81.5)15]) 12—f+m}

')l(L
hour. I

+g—multiple of 24] constituent -

251)

‘The difference between the constituent A-hour and the constituent
B-hour to which the A-hour sum is to be assigned is

o

[{ (1680~ 84.0)1573~'

JZj}m}{jl))Z:L ----- 1};};{/ ------ multiple of 24] (252)
N

By means of the above formula table 33 has been prepared, giving
the differences to be applied to the constituent A-hours of each page
to obtain the constituent B-hours with which they most nearly
coineide,

181. For the construction of sccondary steneils the forms designated
for the compilation of the steneil sums from thoe prunary summations
may be used  Because of the practical difficultios of constructing
steneils with openings in adjacent line spacoes it is desieable that the
original compilation of the primary sums should be made so that cach
alternate line in the form for stencil sums is loft vacant. As with the
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primary stencils, it will generally be found convenient to use two
%on(‘ ils for cach page of the compiled primary sums, although in some

sases it may be found desirable Lo use more than two stencils in order
to separate more clearly the groups to be summed. The actual
construction of the secondary stencils is similar to that of the primary
stencils. A preliminary set of forms is filled out with constituent B-
hours as derived by differences from table 33 applied to the constit-
uent A-hours. The odd and even constituent B-hours are then
transferred to separate forms and the spaces indicated cut out. The
openings corresponding to the same constituent B-hour are connected
with ruled lines and numbered to accord with the constituent hour
represented.  The page numbering corresponding to the page num-
bering on the compiled primary sums and referring to the pages of
the original tabulated hourly heights is to be entered in the column
provided near the left margin of the steneil,

182, In using the stencils each sheet is to be applied to the page of
compiled primary sums having the same page numbering in the lelt
hand column as 1s given on the stencil.  The primary sums applying
to the same constituent B-hour are added and the results brought
together in a stencil sum form, where the totals and means are ob-
tained. A table of divisors for obtaining the means may be readily
derived as follows: In a set of stencil sum forms corresponding to
those used for the compilation of counstituent A primary sums the
number of hourly heights included in each primary sum is entered
in the space (mmsp(mduw o that used for such primary sum. The
ac\(ond(nv stencils for constibuent B are then applied and the sums
of the numbers obtained and compiled in the same manner as that
in which the constituent B height sums are obtained. The divisors
having been once obtained are applicable for all series of the same
length.

In the analysis the means obtained by use of the secondary
stencils may be treated as though obtained divectly by the primary
summations except that a special augmeming factor, to be discussed
later, must be applied.  The closeness of the agreement between the
101111y means obtained by use of the c,(\(*ond(ny stencils and those
obtained (lu(wtly by use of pum(ny stencils will lopon(l to a large
extent upon the 1 (‘LLMOH of the s )0(‘({% of constituents A and B. The
smaller the difference in the m)oo(l the closer will be the agreement.

184. To determine the extreme difference in the time of an indi-
vidual hourly height and of the B-hour to which it is assigned by
the sccondary stencils, let an assumed case be {irst considered in
which the tabulated heights coineide exactly with the integral A-hours,
and that on the middle day of the page of tabulated hourly heights
one of the integral B-hours coinecides exactly with an A-hour. At the
corresponding A-hour, one A-day later, the B-hour will have inereased

)b . o . '
by 24 ]Z'L constituent B-hours. Rejecting a multiple of 24 hours,

this becomes 24(;732%,1), so that at the end of one A-day after the
@

cotncidence of integral hours of constituents A and B the constituent
A hourly height will differ in time from the integral constituent B-hour
b

e LW1> constituent B-hours.
1

to which it is to be assigned by A(
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At the end of the third A-day this difference becomes 72(77732 ~1>
1

constituent B-hours. The same difference with opposite sign will
apply to the third constituent day before the middle day of the page.
Now, taking account of the fact that the B-hour on the middle day
of the page may differ by an amount as great 0.5 of a B-hour from the
integral A-hour, and that the integral A-hour may differ as much as
0.5 of a constituent A, or 0.5 pb/p,a of a constituent B hour from the
time of the actual observation of the solar hourly height, the extreme
difference between the time of observation of an hourly height and
the time represented by the B-hour with which this height is grouped
by the secondary stencils may be represented by the formula

+ [72<~P§w1>+0.5< ,RILIH 1>1 constituent B-hours. (253)

D D1t )

The differences may be either positive or negative, and in a long
series it may reasonably be expected that the number of positive and
negative values will be approximately equal.

185. The above formula for the extreme difference furnishes a
eriterion. by which to judge, to some extent, the reliability of the
method. Testing the following schedule of constituents for which
it is proposed to use the secondary stencils, the extreme differences
as indicated are obtained. The differences are expressed in con-
stituent B-hours and also in constituent B-degrees. It will be
noted that one constituent hour is equivalent to a change of 15° in
the phase of a diurnal constituent, 30° in the phase of a semidiurnal
constituent, ete.

Constituent A ..o J 8

T I O &) 28M g} K Re T Py
Difference in hours . 3. 58 1.86 1.20 1.20 1.10 1,10 120
Difference in degrees._........ i3 41 18 36 33 33 18
Constituent A o L 2M K

Counstituent Bo. ... A2 MK MN [ N2 )
Difference in hours. - 1.18 1.43 124 1.26 1. 4;1
Difference in degre 35 64 T4 : 38 44
Constituent AL ... .. - 0

Constituent 3. _ .. 100 2N I Q) 20

. 1,21 102 2,42 i 6. 58
36 | 3L 51 a7 99

nee in hours
nee in degrees

186. In the ordinary primary suwmmation the extreme difference
between the time of the observation of a solar hourly height and the
intregal constituent hour to which it is assigned is one-half of a con-
stituent hour and, represented by constituent degrees, it is 7.5° for
diurnal, 15° for semidiurnal, 22.5° for terdiurnal, 30° for quarter
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diurnal, 45° for sixth-diurnal, and 60° for eighth-diurnal constituents,
By the above schedule it will be noted that the extreme difference
exceeds 60° in only a few cases. The largest difference is 99° for
constituent 2¢) when based upon the primary summations for O.
This is a small and unimportant constituent, and heretofore no analysis
has been made for it, the value of its harmonie constants being in-
ferred from those of constituent O, Although theoretically too small
to justify a primary summation in general practice, the lesser work
involved in the secondary summations may produce constants for
this constituent which will be more satisfactory than the inferred

constants.
FOURIER SERIES

187. A series involving only sines and cosines of whole multiples
of a varying angle is generally known as the Fourier series. Such a
series is of the form

h=Hy+C, cos 0-+Cy cos 20+ C; cos 304 ...
48y sin -+ 8, sin 20-+8; sin 36 . __

It can be shown that by taking a sufficient number of terms the
Fourler series may be made to represent any periodie function of 6.
This series may be written also in the following form:
ilrm110‘+"£11 COS (0—}“ O(l)“{‘.llg CoB (20"‘ Olg) ”i‘Ag COs (30"{"0{3) "}“w...._. (255)
in which
S"l

A= 10w+80F and o= —tan™ ="

Cyl“
m being the subseript of any term.

188. Irom the summations for any constituent 24 hourly
means are obtained, these means being the approximate heights
of the constituent tide at given intervals of tune. These mean
constituent hourly heights, together with the intermediate heights,
may be represented by the Fourier series, in which

Ily=mecan value of the function corresponding to the height of
menn sea level above the adopted datumn,

0=an angle that changes uniformly with time and completes a
eyele of 360° in one constituent day. The values of 8 corresponding
to the 24 hourly means will be 0°, 15°, 30°, _ _ _ . 330° and 345°,

Formula (254), or its equivalent (255), is the equation of a curve
with the values of ¢ as the abscisse and the corresponding values of
h as the ordinates. If the 24 constituent bourly means ave plotted as
ordinates corvesponding to the values of 0°, 15°,30°, . . _ . for 0,
it is possible to find values for H,, (%, and Sy, which when substituted
in (255) will give the cquation of a curve that will pass exactly through
cach of the 24 points representing these means.

189. In order to make the following discussion more general, let it be
assumed that the period of 8 has been divided into n equal parts, and
that the ordinate or value of A pertaining to the beginning of cach of
those parts is known, Let u equal the interval between these ordi-
nates, then

n u==2x, or 360° 256)

Let the given ordinates be ho, Ay, hy .- h o1 corresponding
to the abscissac o, u, 2u ... (n—1) u, respectively.
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1t is now proposed to show that the curve represented by the
following Irourier series will pass through the n points of which the
ordinates are given:

h=Hy-C, cos 0--C, cos 20+ _ ... Cycos ko
48y sin 048y sin 20+ ... ... S;sinl¢
m==k e,
=Hy-+ 2 O cos m -+ 2> 8, sin mé (2573
el me=}

. . _ . . n—1 . .
in which the limit icz—g if » is an even number, or k== 5 if nis an

odd number; and the limit lmgwl if » is even, or %l if n is odd,

190. By substituting successively the coordinates of the n given
points in (257) we may obtain n equations of the form

m=g m=!
hoy=H,+ > C,, cos mau-+ > 8, sin mau (258}
me==| =l

in which @ represents successively the integers 0 to (n—1).

By the solution of these n cquations the values of n unknown
quantities may be obtained, including I/, and the (n—1) values for
Cn and Sa. It will be noted that the sum of the limits & and [ of
(257) or (258) equals (n~1) for both even and odd values of n.

191. The reason for these limits is as follows:

A continued series Z C,, cos m a v may be written

Cycosaut-Creos2aut. . 0, cosnau
4 Cugny €0s (1) ¢ ut+Cony cos iy aut o+ Cocos2nan
4 Coppry €08 Cn+1) @ v Coyuy, cos 223 ¢ u-t ..
4+ co83nau

S (259)
Bince n u=2r and « is an integer, the above may be written
[C 4 Oy +Capgy - oo | cos @ u
"‘}“' [(/12 “I (7(" 41y "‘I" (/Y(Q" +9) —['" _________ l cos 2 a
T
A NC oty Conty F Cue iy 4 oo 2] €08 (m—1) @ ¥ ‘
A O A o Co lcos noau (260"

08 20 w==1;co8 (n—1) e u=cos (2a @ ) =cos a u;
cos (R—2) a u==cos 2 a u; etc., (260) mav be written

{(7:1 “] CZIZ }' Gm ”}" e [ cos O
-} [01 - ("1("4-1) -} (/1(2714*1) N P
-t 0(,,,_1) “}“ (7(2,1..1) ‘}‘ (](3,[,”1) e ] COs U

|
-+ [(7_, -+ Cuu-:) “+ (-7(‘:11-&-‘:) S
“'{‘ (-"Y(u -2y } (/7(‘2n~2) "*" j\3nﬂ2) ’5 -
"'}‘ {(YA } (:YUI-EAI.')"}“ O(En—}:k) ‘*" B I
+C(_n~k)”*"' (,7(-3,,.../.-) ’}“' (.fy‘;r" kT e ] cos b au (261\
The first term of the above is 0 constant which will be included with
the H, in the solution of (258). From an examination of (261) it is
evident that the cosine terms will he completely represented when

n 7~

11 . .
k=15 or =~ according to whether n is even or odd.

Jeos 2 au

Similarly, the continued series = S, sin m « v may be written
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(S Son - Sa4 oo ]sin 0
—I‘[SIPI“‘S(IIII) F Sliluil) ! R I o
- 6 (1) 7T A (/n DR300 T e e e e _l s @ u

"} [SP ”| S(nw) +- S.zm«z) R

(n-2) "I @2y TR i) T - w.-] sin 2 & u

} [Sl % S(n”) '! AS -ty T o
S(nwl)M“S’\Z"”“Z)H“‘S(jn—[)”“ __________ 1 gin Z au (262)

The first term in the above equals zero. The remaining terms will
take complete account of the series = §,, sin m @ u, if [==5—1 when
A

nis even, or ~—5— when n is odd.

From the foregoing it is evident that the limit of m will not exceed - 5

192, I welet uw and o IGI)I(‘sOI]L any angles with fixed values, m zmdp
any integers with fixed values, and a an integer having successive
values from 0 to (n—1), it may be shown that

a=m-) singnmu . . e
>0 osin (@ m ue) == bnm sin [& (n—1) m utof (263)
&l sin

no-t) X . .
cos (@ m u- o) = cos [3 (n—1) mut-of (264)
a0

A= L Sin g (p—m) ucos 3 (n—1 —m) %
ST sinoa mowsin g mous=sg 2 PP . 2 ) (p—m)
a=o sin % (p-—-m) 4

_ysin g (pwg weos § n—1) (p+m) w (265)
5 A 40192
T sin & ip—m) u ¢
a=(n-l) sin & n (p—m) u cos 3(n—1) (p
SN cos @ pucos aom ums g 2 LT ) o 3 )
e sin  (p—m) u
Lsin g n (p--m)oucos & (n—1) (p-+m) u o
4 Lt (266)
SHY 5 ap-tm) U
a=(1:-1) sin § oo (p—m) uosin y (n—1) (p—m) u

SINL G P U COS ¢ M Y == -
e I sin § (p—m) u

1 sin 5 n (p— m.f» uosin & ( n 1) (p-+m) u
sin & (pe-m) u
2

(267)

193, I we let a==0 and u===-: or » u=27, then formulas (263) to

(267) may be written as follows:

. . 744
A (1) sin moar sin \ i 7r~-'}'; 7\')

ST osin @ m U= : : (268)

a=0

e

Slln A
7

. g i
sin m o cos ( e
\, v/
CO8 @ M U= o (269)
- 1
§in —
n
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amgj—l) . 1 sin (p—m) 7 cos L('pﬁ-m) gt
gin @ p U osin ¢ m u==}
- —m
ﬂo sin &L._Hl
n
-1
sin (p-+m) = cos [(p ) WWZ.M;_.\_ 7{]
—4 " (270)

a={n—1)

COS @ P U COS @M U=}

a0 sin 227 o
T

sin (p-+m) = cos | (p--m) W“ZZ:%?LL W]

+3 271
f " ])_vw m ( )
sin f—- 0
n
o L P—m
A=t sin (p—m) = sin [(pmm) Ft
2, sinapucosamu==}
a=0 p—m
sin A—— 7
n
. . +m
sin (p-+m) = sin L( p-=m) 7r~—2i~7—l~— T
-3 272
+3 e (272)
sin S 7
7

194. If » and m are unequal integers and neither exceeds g; the
above (268) to (272) become equal to zero. Thus,

a={n-1)
sin @ m u=0
a=0
( n
cos am u=0
a=0Q
a=(n—1) ) »
sin @ pusinam u=0 (273)
n=ﬂ( 1(—)~1)
2 cosapucosamu=0
8=0
=(n-—1) s
Vosin @ p o cos o m u=0
8=0

195. If p and m are equal integers and do not exceed g, formulas

(270), (271), and (272) will contain the indeterminate quantity
gﬂ%}:{%ﬁw Ik and also when p and m each equal % the indetermin-
sin f——x

n

ate qmmh’ry -
sin -
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Tivaluating these quantities we have

sin (p—m)w __weos (p—m)r
. P pP—m = (274)
s1n aalvi . . i - COS e
n (p—~m)==0 1 n (p—m)==0
and
sin_(p+m)m _weos (ptm)w
pt+m ™ p+m sy (275)
sin 221, ~ CO§ Fer

(p+m)y=n_ 0 n " _|p-tm)=n
In (275) it will be noted that when the integers p and m each equal
g, n must be an even number, and therefore cos nar is positive, while

cos w is negative,

196. Aasumm the condition that p and m are equal integers, each
less than = 5 We have by subssbituting (274) in (270), (271), and (272),
a=(n-1) . . a=(m-1}

sin g pusinagmus= o, sinfamu=in (276)
=0 a=0
a= (n=-1) g (n--1)
COB A P UCOs am = 2, cosfamu=3n ©Q77)
84220 a=0
ae(n—1) a=(n-1)
>3 sinapucosamu= P sinamucosamu=0 (278)
a0 )

197. Assuming the condition that p and m are each equal to %

2
we have by substituting (274) and (275) in (270), (271), and (272),
a=(n-1)
ﬁ;‘, sinfa mu=%n-+%ncos r=0 279
a=Q
a=(n-1)
cos® am u=4% n—=%mn cos r=n (280)
a==0
a=(n~1)
>0 sinam oy cos am y=0 (281)
8=0

198. Returning now to the solution of (258), by substituting the
successive values of ¢ from 0 to (n—1), we have

ho=Hy-+0C, cos 0+ cos 0-1-___ ... + O cos 0

48, sin 045, sin O+ ..o +8) sin 0
hy=Hy+C, cos u+Cy cos 2u-+__ . + O cos ku

+81 sin. w5, sin Qb -+, sin. ly
hy=H,-C cos 2u-C, cos 4u- ~—__..M_._..”-r(*,b cos 2kul

48, sin 2u-4-8, sin du- ... 48, sin 2w} (282)

h(nﬂl)--«II “J[ (71 COs (n—“l)u 'f"‘C) COS 2(77/‘“1)/“ l"
+ O cos (n—1)ku
48y sin (n—1)u-+S; sin 2n—Dut e
~+8; sin (n—1)lu
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199. To obtain value of H,, add above equations

az=(B~1)
S hy=n H,
fB=0
a=(n—1) a=(n—1) = (n—1)
-+ cosaut+C, 2, cos2aut ... .. +Cp > cosakwu
a=0 a=90 a=0
n (m~1) a=(n-1) a=(n-—1) |
}:} sin g u-+S, 25 sin2aut... ... +8, Z sin ¢l u
8=0
ms= a=(n-1) me= a=(n-1)
=n H, -{_Z Ca Z}cos am u—{«Z S Z} sin @ m u (283)
m=] ms=1
a=(n-—1) a=(n--1)
From (273), Z cosamuand > sin a m u each equals zero,
8=0

. . n
since neither k nor I, the maximum values of m exceeds 0l

Therefore
S ke H, (284)
and e
=2 "3 (285)
T a=o

200. To obtain the value of any coefficient O, such as C,, multiply
each equation of (282) by cos @ p v. Then

hg cos 0==F, cos 0

4+ cos 0-+Cpco8 04 .o +C, cos 0
48, sin 048, sin O +8,8in 0
hy cos p u==H, cos p u
+C cos u cos p u-+C cos 2u cos p u+ ,,,,,,, +C,cos kucospu
+8) sin % cos p u-+S; sin 24 co8 P UA- ... 48, sin [ u cos p u

ke cos 2p u=H, cos 2p u
4Oy cos 2u cos 2p u-+C, cos 4u cos 2p Ut e
Oy cos 2k u cos 2p u
48 sin 2u cos 2p w8, sin 4w cos 2p u-+ .o
-8 sin 21 u cos 2p u
bty €08 (n—1) p u=H, cos (n—1) p
-+ cos (n—1) u cos (nml) » U+ (’o 052 (n~1) u cos (n—1) pu-t+
+C) cos (n—1) k w cos (n—1) pu
-+ 8 sin (n—1) u cos (n—1) pu-+ SZ sin 2 (n—1) w cos (n—1) pu-H ..
+8; sin (n—1) L cos (n—1) pu (286)

Summing the above equations

A= (n-—1) a={n-1)

S hecosapu=kt, 3 cosapu
a=0 a=0
g={n~1) a=(n—1)
+0, 33 cosaucosaputS 2, sineucosaepu
a=20 /=0

(Formula continued next page)
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a={(n-1) a=(n-1)
4y 30 Tcos 2a u cos @ p u--Sy 25 sin 2a u cos @ p
B=0 a==0
a=(n-—1) a=Mm-1) |
4O, S cos a kou cos a p u-kS, 2 sin el wcos apu
/=0 f{=0
_a=(n-1) mf-\k a=(n-—1)
=F, S cosaput >, Cn 2, cOSamucosaepu
8==0 m=1 a=:0
me==l a=(Mn-1)
4+ S8, D) sinamucosapu (287)
m==1 a=0

201. Examining the limits of (287), it will be noted by a reference to

page 63 that k, the maximum value of m for the C terms is g when n

-1

5 when 7 is odd; also, that [ has a value of gml when

is even and

. n—1 . e . .
n is even and 5 when n is odd. The limits of p, which is a partic-

wlar value of m, will, of course, be the same as those of m.
) i as= (N1} |
By (273) the quantity > cos ¢ p u becomes zero for all the

a=0
i a==(n-—1)
values of p, and the quantity 2 ¢os @ m u cos @ p % becomes zero
a=0

for all values of m and p except when p equals m. By (273), (278)
a=(n—1)
and (281) the quantity > sin a m u cos a p u becomes zero for all
a=0

values of m and p. _
Formula (287) may therefore be reduced to the form

a=(n-—1) as(n-1)
S hycosapu=C, 2, cosfapu (288)
a8=0 a=0
For any value of p less than g
a=(n-—1)
> cos?a pu=}n (277)
a=:0

but when pz%, this quantity becomes equal to n (280).

Therefore for all values of p less than g

2 a=@~1)

Cpz=== >0 hycosapu (289)
N a=o

but when p is exactly %

1 a=m-1

Cy== hq cos @ p U (290)
T a<h )

Sinece in tidal work p is always taken less than g, we are not especially

concerned with the latter formula,
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202. To obtain the value of any coefficient S, such as S, multiply

each equation of (282) by sin a p .

Sum the resulting equations and

obtain
a=(n-—1) . a=(un-1),
>V hpsinapu=H, 2, sinapu
a=0 a=0
m=k a=(n-—1) R
-+ Cn > cosamusingpu
m=1 a=0 )
m=] a=(n-1) . .
A4 >0 S sinagmusinapu (291)
m=l 8=0
: .. oa=@sh
By (273), (278), and (281) the quantities 2> sin ¢ p % and
a:(n——l) . a=Q
S cos a mwusin @ p u are zero for all the values of m and p;
a=0
€\=¢(T_l_:\1) . .
and > sin a m u sin @ p w becomes zero for all the values of m

as=

0
and p except when m and p are equal. In this case the limit of [ for

a=(n-1)

2

B=0

m and p is less than % and by (276), the quantity sina p %

=4 n. Therefore, formula (291) reduces to the form
a=(n-—1) .
>% hysinapu=inld, (292)
a=20
and
2 a==(n—1) .
Sp== 2 hysinapu (293)
T g=o

203. By substituting (285), (289), (290), and (293) in (257), the
following equation of a curve, which will pass through the n given
points, will be obtained

1 a=@-1) ["9 a=@m-b
hm;; 25 ha- - Y hycos a u] cos 0
80 L0 a=0
"9 a=(n-1) .
—l-fﬁ > hnsmau]smﬁ
a=0
"9 a=(n-—1)
+ -~ ha COSZCLU] cos 2 6
o a=0
™9 a=(m-1) .
»F;i husm2au]sm20
B8=0

a=m-1) cos k 6
> hycoskan

8=0

9  g=(n-bh .
-{—[ﬁ >0 hysinla u] sin [ 0 (294)
=20

*If 0 is even and k== %» this fraction is ;}w instead of %
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204, Although by taking a sufficient number of terms the Fourier
sevies may thus be made to represent a curve which will be exactly
satisfied by the n given ordinates, this is, in general, neither necessary
nor desirable in tidal work, since it is known that the mean ordinates
obtained from the summations of the hourly heights of the tide in-
clude many trregularities due to the imperfect elimination of the me-
teorological effects and also residual effects of constituents having
periods incommensurable with that of the constituent sought. It is
desirable to include only the terms of the series which represent the
true periodic elements of the constituent. With series of observations
of sufficient length, the coefficient of the other terms, if sought, will
be found to approximate to zero.

205, The shovt-period constituents as derived from the equilibrium
theory are, in general, either diurnal or semidiurnal. If the period
of 8 in formula (257) is taken to correspond to the constituent day,
the diurnal constituents will be represented by the terms with coefficient
C, and S, and the semidiurnal constituents by the terms with co-
efficients Cy and S,. Tor the long-period constituents, the period of
¢ may be taken to correspond to the constituent month or to the
constituent year, in which case the coefficients €, and S; will vefer to
the monthly or annual constituents and the coefficients C; and S, to
the semimonthly or semiannual constituents. For most of the
constituents the coefficients (), §,, Oy, and S, will be the only ones
required, but for the tides depending upon the fourth power of the
moon’s parallax and for the overtides and the compound tides, other
coefficients will be required. Terms beyond those with coeflicients
O, and S;, for the overtides of the principal lunar constituent are not
generally used in tidal work.

206. When it is known that certain periodic clements exist in a
constituent tide and that the mean ordinates obtained from obser-
vations include accidental errors that are not periodic, it may be
readily shown by the method known as the least square adjustment,
using the observational equations represented by (258), that the most
probable values of the constant 71, and the coefficients ) and S, are
the same as those given by formulas (285), (289), and (293),
respectively.

207. Since in tidal work the value of I, which is the elevation of
mean sea Jevel above the datum of observations, is generally deter-
mined directly from the original tabulation of hourly heights, formula
(285) is unnecessary except for checking purposes. Formulas (289)
and (293) ave used for obtaining the most probable values of the
coefficients ¢, and 8, from the hourly means obtained from the
summations.

formulas may be written

n=23
cpmi% S hycos 15ap (295)
& gg
1 a=23 .
Sp=15 25 hasin 15a p (296)
&m0

in which the angles are expressed in degrees.
1 only 12 means are used, the formulas beeome
g a=11

> hacos 30 ap (297)

=
() a=9
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1 a=11

b= 2 h,sin 30 a p (298)
) a=o0

209. The upper part of Form 194 (fig. 16) is designed for the compu-
tation of the coefficients (), and S, in accordance with formulas (295)
and (296) to take account of the 24 constituent hourly means.

It is now desired to express each constituent in the form

y=2 cos (p 6+a) (290
or using a more specialized notation by
y=A cos (p 6—{) (300)
By trigonometry
Acos (po—¢)=A cos { cos p 6-~A sin { sin p 0 (301}
=}, cos p 05, sin p 0
in which Co=Acos¢ and S,=.dsin¢ (302
Therefore,
S an:
tan f”’(?; (303)
and
) A(" ISR S
(= o o orSE (304)

cos ¢ sin{

Substituting in formulas (303) and (304) the values of C, and S, from
formulas (295) and (296), the corresponding values for 4 and ¢ may
be obtained. Substituted in formula (300), these furnish an ap-
proximate representation of one of the tidal constituents, but a further
processing is necessary in order to obtain the mean amplitude and
epoch of the constituent.

AUGMENTING FACTORS

210. In the usual summations with the primary stencils for all the
short period constituents, except constituent S, the hourly ordinates
which are summed in any single group are scattered more ov less
uniformly over a period from one-half of a constituent hour before
to one-half of a constituent hour after the exact constituent hour
which the group represents. Because of this the resulting mean will
differ a little from the true mean ordinate that would be obtained if
all the ordinates included were read on the exact constituent hour, as
with constituent S, and the amplitude obtained will be less than the
true amplitude of the constituent. The factor necessary to take
account of this fact is called the augmenting factor.

211, Let any constituent be represented by the curve

y=21 cos (ai-+a) (305)
in which
A=the true amplitude of the constituent
a=the speed of the constituent (degrees per solar hours)
t==variable time (expressed in solar hours)
a=any constant,
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The mean value of y for a group of consecutive ordinates from 7/2
hours before to 7/2 hours after any given time ¢, » being the number
of solar hours covered by the group, iz

4 b2 A t+r/2
ilf " cos (at a)di= 180 4 sin uzt—fa)] '

T t—rf2 T AT trf2

180 Al . \ ar . ar
= [;sm <at—»,~a+ :§>~sm <at+ a»-wi)]

.oar 360 . ar

== o= cos (at-+ @) sin 5= sin 54 cos (at-+a) (306)
212. Sinee the true value of y at any time ¢, is equal to A4 cos (at-+a)

by (305), it is evident that the relation of this true value to the mean

value (306) for the group = hours in length is

A cos (al—+a) _ war

—— gin (%T‘ A cos {at+a) 360 sin ar (307)
waT 2 5

The quantity e po ts the augmenting factor which is to be

360 sin—-i)w

applied to the mean ordinate to obsain the true ordinate. In the use
of this factor it is assumed that all the consecutive ordinates within
the time 7/2 hours before to /2 hours after the given time have been
used in obtaining the mean. This assumption is, of course, only
approximately realized in the summation for any constituent, but the
longer the series of observations the more nearly to the truth it
approaches.

213. According to the usual summations with the primary stencils,
the hourly heights included in a single group may be distributed over
an interval from one-half of a constitutent hour before to one-half of a
constituent hour after the bour to be represented. In this case 7

. ‘ 15p
equals one constituent hour, or ~"—l~ solar hours,

Substituting this in (307), the

wp
. 15p
24 sin =5 (308)

which is the formula generally adopted for the short-period constituents
and is the one used in the calculation of the augmenting factors in
Form 194, Tor the long-period constituents special factors are
necessary which will be explained later,

214, 1f the second system of distribution of the hourly heights as
described on page 53 is adopted, » equals one solar hour and formula
(307) becomes

sugmenting factor==

w&

360 sin %

augmenting factor = (309)
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It will be noted that formula (3087 depends upon the value of p and
therefore will be the same for all short period constituents (S excepted)
with like subscripts.  Formula (309} depends upon the speed a of the
constituent and will therefore be different for each constituent.

215. When the secondary stencils are used, the grouping of the
ordinates is less simple than that provided by the primary stencils
only. Let it be assumed that the series is of sufficient length so that
the distribution of the ordinates is more ar less uniform in accordance
with the svstem adopted.

Suppose the original primary summations have been made for con-
stituent A with speed ¢ and that the secondary stencils have been
used for constituent B with speed b.  Then let p and p’ represent the
subscripts of constituents A4 and B, respectively.

The equation for constituent B may be written

y=B cos (bt--8) (310;

216. In the primary summation for constituent 41, the group of ordi-
nates included in a single sum covers a period of one constituent 4
17

Csolar hours.  Ixpressed in time f, midway of this interval

hour or -
and representing the exact integral constituent . hour to which the
group applied, the average value of the I ordinates included in such
a group may be written

a ,,EJ-ZI?
el B cos (bt 8) dt
5 hp ’

80 o (e g N (e g )
~~~~~ 71 ]‘:,x])'b B Lh]ll (1)[‘ ! ﬁ“F 9 ) 3 » ! 0 |
24 a0 . 15 N .
( ta sin -!5)!»'{)«) B cos (bt
7w pb

2a
I BB cos (bt B) (3113

) 3

Tn whieh 7y, for hrevity, is substituted tor the coeflicient '27: ;Izl};siu 15ph
and gives the relation of the average B orvdinate included in the o
grouping to the true 3 ordinate for the time ¢ represented by that
aroup.  The reciprocal of this coefficient will be that part of the
angmenting factor necessary to take account of this primary grouping.
If the primary summing has been {or the constituent 5, this coelficient
may be taken as unity since the original = sums refer to the exact 5
hour.

217. When the secondary stencils ave applied to the constituent
A group sums, the groups applying to an exact constituent A hour at
any time ¢ and represented by that time. will be distributed over an
interval of a constituent B hour, or ! (;!f“ solar hours.

7

For an inteeral constituent B hour at any time ¢ within the middle

day represented by a seven-day page of original tabulations the limits

oy . , ) VAR V7N
of this interval will be { t— and \! b= 1o For the same page

2b 2h
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of tabulations, letting ¢ represent the same time in the middle day, the

limits of the group interval for the day following the middle one, are
£

<t 138921507 nd (H Wp 100 ) If we lot n=—3, —2, —1, 0,

41, +2, 43, respectively, fm the seven successive days repr esented

by A cung,lc page of original tabulations, the limits of the group interval

for any day of the page may be represented by

;
(H, *i‘}_Q_l_’l':ml_’ﬂ {<t+§£’_9llli 1:31;

218. Formula (311) gives the mean value of the B ordinate for
grouping of the A4 summations. The mean value of (311) obtained
l)v (omblmno the groups falling in any particular day of page of
tabulations in the limits indicated above is

1420000 13p]
W
T%? Fllff ] »a " cos (bt--8) dt

sy d60pn_1ap’
T

= l' HLsm(l)i - _;ni(l%ll,"wk 5]"}

--4sm<bt v +3 )()bpn 1 op >]

(2% L g 01'), X %f)()pn
~(% . F\B cos (l)t i >

g }
= I\ FyB cos (bt 420 b’"’) (312)
.. . 241 . 15 .
if we put I’f«"—;; ;7 81N --~;~v~- fOl brevity.

219. Formula (312) represents the mean value of the B ordinate
101 a particular day of the page record. The average value for the
7 days may be written

LB nij,l cos (t B+'3b()bl”’>

n=-—3

10t [os 018 cos (—3 299%) s - s (3 2000)

«a
J-cos (bi-B) cos <,-.2 ‘E(’()b/'>_\m (bp -t B) sin < ..... 9 ‘;M)b/)>

« a
+-cos (bt B) cos <—~1 73—(—)-2-9!3 >,_. sin (bt--B) sin <~~ 1 %(»21)1))

A-cos (bt--B) cos O-—sin (bt--B) sin 0

d-cos (bt-+B) cos <3()2b1)>_ sin (bt @) sin (3691)1‘)>

a

(Formula coutinued next page)
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o 360 d ' 360bp
::‘!,I",[sz[l +2 cos %(»i—(ilil—')'»{«z cos 2 ‘Gg«blf—u cos 3 322!@] cos (bi-+3)

. 360bp 3 360bp
oS 7 £

sin 2 == cos 5 =
=B 2 RPN T T
‘.I’l ‘v—-‘——v
a

b ol

—1 | cos (bt--B)

= . 12606
sin =

=1F\F\B ‘—_w.i’;r cos (bt B). (313)

220. Replacing the equivalents of Fy and F, in (313), the average
value of the B ordinate as obtained by the secondary summations
may be written

1260bp
24a . 15bpT[ 24 . 5pTH T a 1,
[;;1;6 sin "—27[-][7}“1;/ S ‘L‘“] 7";;;—}8()6}; J B cos (bf +“ ﬁ) (314:)
sin ==

Since the true ordinate of coustituent B at any time ¢ is equal to
B cos (bt4-8), the veciproeal of the bracketed coefficient will be the
augmenting factor necessary to reduce the B ordinate as obtained
from the summations to their true values.

This augmenting fuctor may be written

7 sin 1806

whp p’ 7 sin =
56 3N | v ”
24q sin l:’!)j) 24 ain 1*‘)/L . 1260bp (315)
2a 2 T et il

The first factor of the above is to be omitted if the primary sum-
mations are for constituent 5. It will be noted that the middle factor
is the same as the augmenting factor that would be used if constituent
B had been subjected to the primary summations.

PHASBE LAG OR EPOCH

221. The phase lag or epoch of a tidal constituent, which is repre-
scnted by the Greek kappa (x), 1s the difference between the phase of
the observed constituent and the phase of its argument at the same
time.  This difference remains approximately constant for any con-
stituent in a particular loeality.  The phuse of a constituent argument
for any time may be obtained from the argument formula in table 2 by
making suitable substitutions for the astronomical clements. The
argument itself is represented by the general symbol (V4-u) or £ and
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its phase or value pertaining to an initial instant of time, such as the
beginning of a series of observations, is expressed by (V,-+u). Refer-
ring to formula (300), since 0 is reckoned from the beginning of the
series, the angular quantity () is the corresponding phase of the
observed constituent at thig time. The phase lag may therefore be
expressed by the following general formula:

= Vot ti— (— )= Voburt¢ (316)

222, Since the argument formulas of all short-period constituents
contain some multiple of the bour angle (7) of the mean sun, the
arguments themselves will have different values in different longitudes
at the same instant of time. If p equals the coeflicient of 7' or the
subscript of the constituent and L equals the longitude of the place
in degrees reckoned west from Greenwich, L being considered as nega-
tive for east longitude, the relation between the local and Greenwich
argument for any constituent may be expressed as follows:

local (V--u)==Greenwich (V-pu)—pl 317)

223, Also, since the absolute time of the beginning of a day or
the beginning of a year depends upon the time meridian used in the
locality, the mitial instant taken for the beginning of a series of obser-
vations may differ in different localities even though expressed in the
gsame clock time of the same calendar day. If we let 8 equal the
longitude of the time meridian in degrees, positive for west and nega-
tive for cast, the same meridian expressed in hours becomes S/15.
Letting a cqual the speed or hourly rate of change in the constituent
argument, the difference in argument due to the difference in the
absolute beginning of the serics becomes aS/15, and the relation
between the loeal and Greenwich argument due to this difference
may be expressed as follows:

local (Vy-ta)= Greenwieh (Vo) pl-4-aS/15 (318)

same clock time but not the same absolute time unless both elocks are
set for the meridian of Greenwich.

224, Values of (Vo) for the meridian of Greenwich at the
beginning ol each calendar year 1850 to 2000 are given in table (5
for all constituents represented in the Coast and Geodetic Survey
tide-predicting machine. Tables 16 to 18 provide differences (ov
referring the arguments to other days and hours of the year. In the
preparation of table 15 that portion of the argument included in the u
was treated as a constant with a value pertaining to the middle of the
salendar year.  If the Greenwich (Vio--u) with its corrections is sub-
stituted for the local (Vi-+u) in formula (316), we obtain

t=Greenwich (Vod-u)—pl-4-aS/164-¢ (319)

225, The phase lag designated by « is sometimes called the local
epoch to distinguish 1t from certain modified forms which may be used
for special purposes. In the preparation of the harmonic constants
for predictions it is convenient to combine the longitude and time
meridian corrections with the local epoch to form a modified epoch



HARMONIC ANALYSIS AND PREDICTION OF TIDES 77

designated by £’ or by the small g. The relation of the modified
epoch to the local epoch may then be expressed by the following
formula:

k' or g=x-+pl—aS{15=Creenwich (V,-+u)-+¢ (320)

226. The phases of the same tidal constituent in different parts of
the world are not directly comparable through their local epochs since
these involve the longitude of the locality. For such a comparison it
is desirable to have a Greenwich epoch that is independent of both
longitude and time meridian.  Such an epoch may be designated by
the capital ¢ and its relation to the corresponding local epoch ex-
pressed as follows:

Greenwich epoch (G)=

-pLi=Greenwich (Vo-Fu)-++aS/154¢ (321)

227, The angle « may be graphically represented by figures 7
and 8. In figure 7, we have a simple representation of a single con-
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stituent. In this figuve changes in the phase or angle are measured
along the horizontal line, positive change toward the right and nega-
tive change toward the left. The full vertical line indieates the
beginning of the series, at which time the angle p 0, or af, equals 0.
At the left of this vertical line, the symbol of a moon (M) indicates
the zevo value of the equilibrium argument that preeedes the begin-
ning of the serics. Fov the principal unar or solar constituent, this
will be simultancous with a transit of the mean moon (modified by
longitude of moon’s node) or of the mean sun, and for other short-
period constituents with the transit of a fictitious star representing
such constituent (p. 23). At the point represented by this moon,
the angle (V1) has a value of zero. This angle increases to the
vight, and at the beginning of the series has a value vepresented by
(Vo-t), which may be readily computed for the beginning of any
series,  This interval from 3 to the time of oceurrence of the first
following constituent high water is the epoch «. This represents the
Ing or difference between the aetual constituent high water at any
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place and the theoretical time as determined by the equilibrium
theory. The distance from the beginning of the series to t{m {ollow-
ing high water is the { of formula (300), which is determined divectly
from the analysis of the observations. From the figure it is evident
that the « is the sum of (Vo-+u) and ¢, and also that it is independent
of the time of the beginning of the series.

228. Tigure 8 gives a more detailed representation of the epoch of a
constituent. In this figure the horizontal line represents changes in
time. Distances along this line will be proportional to the changes
in the angle of any single constituent, but since each constituent
has a different speed equal distances along this line will not represent
equal angles for different constituents. The time between the events
may be converted into an equivalent constituent angle by multiplying
by the speed of the constituent. The figure is to some extent seli-
explanatory. The word “transit” signifies the transit of the fictitious
moon representing any constituent and also the time when the equili-
brium argument of that constituent has a zero value. For all short-
period constituents the time of such zero value will depend upon the
longitude of the place of observation as well as upon absolute time.
For long-period constituents the zero values are independent of the
longitude of the place of obscrvation, and the transits” over the
sevoral meridians may be considered as occurring simultaneously,
which is equivalent to taking the coefficient p equal to zero. The
figure illustrates the relation between the Greenwich (Vo-+u) caleu-
lated for the meridian of Greenwich and referring to standard Green-
wich time and local (Vo-+u) referring to the meridian of obscrvation
and the actual time of the beginning of the observations.

INFERENCE OF CONSTANTS

299. Under the conditions assumed for the equilibrium theory the
amplitudes of the constituents could be computed directly by means
of the coefficient formulas without the nccessity of securing tidal
observations, and the phases would correspond with the equilibrium
arguments of the constituents. Under the conditions that actually
exist it has been found from observations that the amplitudes of the
constituents of a similar type at any place, although differing greatly
from their theoretical values, have a relation that, in general, agrees
fairly closely with the relations of their theovetical coefficients. It
has also been ascertained from the results obtained from observations
that the difference in the epochs or lags of the constituents have a
relation conforming, in general, with the relation of the differences
in their speeds.  This last relation is based upon an assumption that
the ages of the inequalities due to the disturbing influence of other
constituents of a similar type are equal when expressed in time.

230. 1 the mean amplitudes, epochs, and speeds of several constit-
wents A, B, O, are represented by H(A), H(B), H(C), x(A4), x(B),
K(C), and @, b, ¢, respectively, the above relations may be expressed
by the following formulas:

vam aeedBatn n
1B __mean coc flicient of £ 1(A) (322)

i

“mean coefficient of 2
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& (O~ (A) =5— [ (B) —r(A)] 323)
or,

k(C)=x(A) 1~ ~~~~~~~~ [ (B) —«(4)] (324)

By formula (322) the amplitude of a constituent (B8) may be inferred
from the known amplitude of a constituent (A), and by formula (324)
the epoch of a constituent () may be inferrved from the known epochs
of constituents (A4) and (B).

231. These formulas have, however, certain limitations. They
are not applicable to shallow water and meteorological constituents,
nor are they adapted to the determination of a diurnal constituent
from a semuidiurnal constituent or of a semidiurnal constituent from
a diurnal constituent. The results obtained by the application of
the formulas to tides of similar type may be considered only as rough
approximations to the truth. They may, however, he preferable to
the values obtained for certain constituents when the series of obser-
vations is short.

232, By substituting the mean values of the coeflicients and the
speeds from table 2 the following special formulas mav be derived
from the general formulas (322) and (324)

Divurnal constituents

H(J,) ={.079 ][(()) NEDEETICOE: () 496 [n(Ix) —x (O] (325)
IT(M) =0.071 TH(OD ;\(\l[) (1\1) ------- 500 k(K =« (O] (326)
]l(()()) ----- -(0.043 ]1(()) (OO =x(K))- 000 (K —x(0)] (327)
TI(P) ==0.331 H(K,); «(P) :-A«(le)w() 075 [k(K) — k(O] (328)
THQ) =0.194 H(O); «(Q) =rx(Ix)—1.496 [(I)=x(O))] (320)
]I()Q) ~~~~~~ =0.026 11(0)); «(2Q) (\l)w 1.992 [k (1) — K(()}H (330)
Hip) =0.038 H(O); x(p) =x(I)—1.429 [x(I<) —x(0O))] (331)
Semidivrnal constituents

H(KY) =0.272 H(S) 5 «(Ky) :rf\(‘“ ) 4 0.081 {[k(5) —«(NL)] (332)
H{ly) =0.028 I’I(A\lg), k(1) (5)) —0.464 [x(9) —«(N)] (333)
0.143 T1(Ny) ; == (NI)) F1.000 [x(My) — (N ] (334)

TT(N) =0.194 TT(M,) ;5 x(N) ==x(8,) —1.536 [x(S2) —x(DL)] (335)
H(2N)=0.026 I[(ng), ;\(,ZN):::: (‘ — 7 2.072 [x(5,) (D] (336)
-vrf()Al:%:% II(N;,); (KON — k(N ] (337)
TI(R,) =0.008 ][(‘ ) [£(S,) = x(NY)] (338)
TH(TH v.::.() 050 T1(S >) k(S —«(Ny)] (330)
TT(N) 0.007 TT1(A L) « k(S) - 0.536 [k(S2) —«x(My)] (340)
TIGm) —0.024 T[T x(i) = (S —2.000 [x(S) —x(Ma]  (341)
I](V») ()():;8 ]](I\Ig), I\(V_)) ”-h(Sg) o 1 4(‘)4 [K(S)) - ’\(:\Ig)] <:;12)
=0.194 JT(N,); = k(M) —0.866 [« (My) —x(Ny)] (343)

233. In order to test the reliability of the results obtained by infer-
ence as above, 60 stations representing various types of tide in different
parts of the world where the harmonie constants had been determined
from observations were selected and a comparison was made between
the values for certain constants as obtained by inference and by
obscrvations.  The tests were applied to the diurnal constituents
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M,, P, and Q, and to the semidiurnal con%tituonts K, Ly, and »y, and
formulas (326), (328), (329), (332), (333), and (342) were used for the
purposc.  The following results were obtained for the differences
between values as obtained from inference and {rom observations.
The average gross difference is the average difference without regard
to the signs of the individual items, and the average net (hﬂcronco
takes into account these signs so that a positive difference may offsct
a negative difference in the mean. The last two lines in the table
show the percentage of cases i which the differences were less than
0.05 and 0.10 foot, respeetively, {for the amplitudes, and less than 10°
and 20°, respectively, for the epochs.

; i i
A T T AR
i ; M N S o Qs
Pampli-§ 2L Fampli- | . fampli- X
tude cpoch tade | epoch ude epoch
- ! |
|
I't. Deg. Pt Deg. Deg.
Navimn ditference oo ‘* 0. 05 149 0.27 49 105
‘erage pross difference. ... . . . .02 31 03 § . 14
age net AHIETenee. oo L0t 1 01 ! 3 o
! i
P [ [ s ¢/,
X 7 0 70 : R { Jo
Dillerences less than 0.05 foot or 10° . 93 37 84 1 76 3 58
Differences tess than 010 oot ov 20° 160 &7 a2 024 82
1 | | )
Ky | o1 Le Yom
L 5 Y L2 . . ve
ampli-1 S Campl- M Jampti- | V2
tude | epoch | tude epcch tade epoch
| g . e -
P Deg. It Deg. 'L Deg.
Maximuny diflerence 0.28 | 5L L09 104 5 0,28 53
Average gross ditfercoce 02 i 9 L0Y 25 " L4 14
Average net difference. ... ... 00 1 5 L0 40 .02 4
a | % | a oo w |y
Differences less than 6.05 foot or 1 : &7 4 65 | 58 20 71 ! 48
Differences less than 0,00 foot ov 207 oo 07 | 93 4 It 4 88 83
; ; i !

By using formulas (334) and (343) for L and » the results are
slightly improved, the average net differences for the amplitude and
epoch of Ly becoming 0.07 foot and 3°, respeetively, the difference for
the epoch of v, b(\commo 2°, while the average net difference for the
amplitude of », remains unchanged.

234. Although tllm(\ is a fairlv good agreement indicated by the
average differences, 1t 1s evident Tt the inferred constants, especially
the epochs, ,(mnot. "bo depended upon for a high degree of refinement.
It may be stated, however, that for constituents with very small
amplitudes the epoe hs determined from setual obsevvations may be
equally unreliable. This becomes evident when results from diff erent
vears of ()bsumtmns are compared. Fortunately, the large dis-
crepancies in epochs are found only in constituents of small amplltudo
and are therefore of little practieal importance.

235. Constituent gy as determined l’)y inference is relatively unim-
portant. However, this constituent has the same period as the
compound tide 2MS, and when obtained diveetly from the analysis
of observations frequently differs considerably from the inferred p,
both in amplitude (m(.l epoch.  The inferred values for this constituent
cannot tlw,rof()ro be considered as very satisfactory.

236. Prior to the climination process deseribed in the next section,
certain preliminary corrections are applied to the amplitudes and
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epochs of constituents 5, and B because of the disturbing cffeets of
Ko and T, on the former and P, on the latter. In a short series of
observations these effects may be considerable because of the small
differences in the periods of the constituents involved.

237. Let

yi=A cos (at-} ) (344)
and
12=8 cos (bt B) (345)

represent two constituents, the first being the principal or predomi-
nating constituent and the latter a secondary constituent whose effect
is to modify the amplitude and epoch of the principal constituent,
The resultant tide will then be represented by

Y=y ye= A cos (at-4-a)-+B cos (bt ) (346)

Values of ¢ which will render (344) a maximum must satisfy the
derived equation

Aa sin (at-+ o) =0 (347)
and the values of ¢ which will render (346) a maximum must satisfy
the equation

Aa sin (at+e)-+-Bb sin (bt 8)=0 (348)
For a maximum of (344)
2n r—a
p= 220 (349)

in which n is any integer.
238. Let g::the acceleration in the principal constituent A4 due to
the disturbing constituent 8. Then for a maximum of (346)
j2n ol (350)
This value of ¢ must satisfy equation (348), therefore we have

Aa sin @n w—0) -+ Bb sin [3(27& O cx) -+ B]

= — Aa sin - Bb sin [g)—;;a' @n 7m—0—ca)-}+ B~ a——O] =0 (351)

At the time of this maximum, when

the phase of constituent 4 will equal
@n r—a—0) -+«
and the phase of constituent B will equal
b .
P @n r—a—0)-18
Let ¢==phase of constituent B~ phase of constituent A4 at this time.
Then
p=— (20 T a—0) 4 B—a (352)
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Substituting the above in (351)

— Aa sin 0-+Bb sin (¢—0)

== — Ag sin §--Bb sin ¢ cos §—Bb cos ¢ sin 0
- =z — (Aa-+Bb cos ¢) sin 0+ Bb sin ¢ cos =0 (353)
Then

o g 0SNG
tan 0= 5 T Bb cos ¢ (354)

239, For the vesultant amplitude at the time of this maximum sub-
stitute the values of ¢ {from: (350), in (346), and we have

Y= cos 2n w—0)-+-B cos [g— @n r—0—a)-t 6‘]

= cos 0-+B cos [Q:ﬁ 2n v—0— )+ B—a— 0]

@

=1 cos 0-1- 8 cos (¢—0) (356)
= A cos 048 cos ¢ cos -1 sin ¢ sin 6

= (A-}-13 cos ¢) cos 0--B sin ¢ sin 0
== AT B2 AR cos ¢ cos ( g—tan™! AI} B“:(?:(b

240, From (354)
B sin ¢

0= tan ™ s == tan” lAa:‘ (356)
tlb}*[g COs ¢ "j}"l*)”"*COS ¢
In the special cases under consideration the ratio (lj is near unity,
B sin ¢

il g therefore ver
A48 cos ¢ S
small, so that the cosine may be taken as unity.

The resultant anplitude may therefore be expressed by

and the difference between 0 and tan™?

VA B 248 cos d>:::A%/1+'§;+2§ cos ¢ (357)

The true amplitude of the constituent sought being A, the resultant
amplitude must be divided by the factor

%/ 1 4;,—%25{ cos ¢ (358)

in order to correct for the influence of the disturbing constituent.
241. The corrections for acceleration and amplitude as indicated
by formulas (356) and (358) may to advantage be applied to the con-
stants for constituent K, for an approximate elimination of the effects
of constituent P, and to the constants for S, for an approximate
climination of the effects of constituents K, and T,. By taking the

relations of the theoretical coeflicients for the ratios 51 and the differ-

ences in the equilibrium arguments as the approximate equivalents
of the phase differences represented by ¢, tables may be prepared
giving the aceeleration and resultant amplitudes with the arguments
referring to ecrtain solar elements.

Thus, from table 2, the following values may be obtained.
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B I Aa

A 1 B ¢
Kifeet of Pron K. 0.33086 | 3.03904 | --2h--»'--180°,
Tflect of Kyon Sy 0,27213 | 3.66469 | 2h—20"",
Effect cf Thon S 0.056881 | 17.02813 | —h-+pi.

Substituting the above in (356) and (358) we have
Tiffect of Py on K,

sin (2h—v")
3.0390~—cos (2h—v")

Resultant amplitude=0.813+/1.6767 —cos (2h— ") (360)
Effeet of K, on 5,

Acceleration=tan™!

(359)

Acceleration=tan™!

sin (2h—23")
3.6647 +-cos (2h—2v")

Resultant amplitude==0.738+/1.9734Fcos (2h—2,") (362)
Effect of T, on 5,

(361)

—sin (h—py)
17.0281-+cos (h—py)

Resultant amplitude=0.343+/8.5318+cos (h— p;) (364)

(363)

Acceleration=tan™!

242. The above formulas give the accelerations and resulting
amplitudes for any individual high water. For the correction of the
constants derived from a series covering many high waters it is
necessary to take averages covering the period of observations.
Tables 21 to 26 give such average valtes for different lengths of series,
the argument in “each case 1(‘1"0111110" to the beginning of the serics.

In the preceding formulas the mean values of the coefficients were

taken to obtain the ratios % To take account of the longitude of

the moon’s node, the node factor should be introduced. If the mean
coefficients are indicated by the subseript o, formulas (356) and (358)
may be written

Acceleration=tan~ 1f</1) Ao(l; """"""""" - (365)

F(BYB,b T8 @
2 o it e F(B)BYN | (BB, ,
Resultant amplitude \/1+(f(/l)/10 | Zf (A, cos ¢ (366)

243. In the cases under consideration the ratio ;Efg; will not differ

A
greatly from unity, the ratio B_?; will be rather large compared with
g

cos ¢, which can never exceed unity, and the acceleration itself is
relatively small.  Because of these conditions the following may be
taken as the approximate equivalent of (365):
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s JB)
Acceleratior =) tan l;"f;& ~~~~~~~~~~~ - (367)

57, T CO8
BpHeose
B, . . , . .
Also because - 1”— in these cases is small compared with unity, the

<10

following may be taken as the approsimate equivalent of (366):
fenl A X

Resulting amplitudes==1 —l«‘}%—g;[x/bl- <§—:> +2 j{i—z cos ¢— 1] (368)

To allow for the effects of the longitude of the moon’s node, the
tabular value of the acceleration should, therefore, be multiplied by
the ratio f(%) and the amount by which the resultant amplitude
differs from unity by the same factor. In the particular cases under
consideration the factor f, for constituents Py, S, and T 2} J_]S; )umty for

\ - - . 1
oaob. | Therefore, for t‘he eﬂe@ of P, »()n Ix.], tho. ]‘fdt’lo,:z%}ij :—»RK—‘)
= ['(K,), and for the effect of K, upon 8y, this ratio is f(I,). For the
effect of T upon Sy the ratio is unity.

ELIMINATION

244. Because of the limited length of a series of observations
analyzed the amplitudes and epochs of the constituents as obtained
by the processes already deseribed are only approximately freed from
the offects of cach other. The separation of two constituents from
each other might be satisfactorily accomplished by having the length
of serics equal to a multiple of the synodic period of the two con-
stituents.  To completely effect the separation of all the constituents
from cach other by the same process would require a series of such a
length that it would contain an exact multiple of the period of each
constituent. The length of such a series would be too great to be
given practical consideration. In general, it is therefore desirable to
apply certain corrections to the constants as directly obtained from
the analysis in order to eliminate the residual effects of the constituent
upon each other.

245. Let A be the designation of a constituent for which the true
constants are sought and let B be the general designation for each
of the other c¢onstituents in the tide, the effects of which are to be
climinated from constituent 4.

Lt the original tide curve which has been analyzed be represented
by the formula

y=A cos (at-+a)+Z B cos (bi-+p) (369)
in which
y=the height of the tide above mean sea level at any time i.
t==time reckoned in mean solar hours from the beginning of
the series as the origin.

covered by series of observations,

B =R(B)=true amplitude of constituent B for the time cov-
ered by series of observations.

a==—{(A)==true initial phase of constituent A at beginning of
series.
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SOT1eS,
a=speed of constituent .
b=speed of constituent B.
246. Formula (369) may be written
y=A cos a cos at-+3 B cos { (b—a)t-+-B} cos at
— A sin a sin at—2 B sin {(b—a)t+ B} sin at
=[A cos a2 B cos {(b—a)t-+B}] cos at
—1A sin a2 B sin { (b—a)t--B}] sin at (370)

The mean values of the coefficients of cos at and sin at of formula
(370) correspond to the coefficients %, and 8, of formulas (295) and
(296) which are obtained from the summations for constituent 4.

247. Let A’ and o’= the uneliminated amplitude and initial phase,
respectively, of constituent A4, as obtained directly from the analysts.

The equation of the uneliminated constituent A tide may be written

y=A" cos (at-}-o’)=A" cos o’ cos at—A’ sin o sinat  (371)
Comparing (370) and (371), it will be found that

A’ cos o =mean value of [4 cos a-+5 B cos {(b—a)t+B:] (372)
A’ sin o’ =mean value of [A sin a3 Bsin { (b—a)t4- 811 (373)

S

248. Let 7==length of series in mean solar hours. Then the mean
value of

B cos {(b~—a)i-+B} within the limits (=0 and (=7, is

% ﬁrﬁ cos { (bw-a)t‘»}‘ﬁ}(it:}?ﬁ ‘(z{lj’i‘a}? [sin {(b—a)7-- B} —sin B]

Q0 sin L(h—
180 sin 3(b—q)7p cos {L(b—a)r+ B} (374)

r  s0b—a)r
The mean value of B sin {(b—a)t4-B} within the same limits is

j f B sin ((b—a)i+ g)di=—"" »(B-aé%j-;[cos ((b—a)r+ B} —cos ]

o
180 sin 50— D1y o0 (1 3—a)rt B} (375)

T r L)
Substituting (374) and (375) in (372) and (373), and for brevity
letting
2180 sin 5(b—a)r;

we have
A’ cos o/ =A cos a2 I, cos {$(b—~a)r-+ B} (377)
A sin o' =4 sin a2 F,sin {3(0—a)7-+ B} (378)
Transposing,
A cos a==A" cos o’ —2= F, cos {$(b—a)r- B} (379)
Asin a=A" sin o' —2 F, sin {$(0—a)r-+ B} (380)

Multiplying (379) and (380) by sin o’ and cos o', respectively,
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A sin o cos as== sin o cos o’ — 3 Fyeos {3(b—a)r-8; sin o (381)
» Ik, sin {%(/ )-8 cos o' (382)
Subtracting (382) from (381)
Asin (¢ —a)=2 F,sin {3(b—a)r+p—a} (383)
Multiplying (379) and (380) by cos &’ and sin o', respectively,

A cos o cos a=2d" cos? o' —2 Fy, cos {3(b—a)r-+B} cos o (384)
Asin o sin a=A’ sin® o’ —3 Fy, sin {3(b—a)r-}-8; sin o' (385)

Taking the sum of (384) and (385)
Acos (¢ —a)=A"—2 F, cos {3(b—a)r--B—a'} (386)
Dividing (383) by (386)

% Fysin (3(b—a)r-f—a’}
—2 Iy cos {5(b—a)r+p—a'}

tan (o' — oz):A/
From (386)

(387)

A2 By, cos (3(b—a)r--B—a}

A= cos (o' — o)

(388)

249. Substituting the value Fy from (376) and the equivalents
R'(A), R(A), R(B),— ' (A)—(A), and —¢(B) for A’, A, B, o/, , and
B, respectively, we have by (387) and (388)
tan [¢(A)—¢" (A)]=
sin L(b—a
80 Drp ) i (36— a)r—s(B)+ (W)

T Q)T

(389)

. T80 sin S(b—a)r,, -
R () — 5150 ?1%5%6%2_13 (B) cos {1(b—a)r—tB) -+ (A))

180 sin 4 (b—a)7), (B) cos {1(b—a)r—t(B)+¢'(A))

5

Bay= DT Ty

cos [£(A)— ¢ (4)]

(390)

250. Tormula (389) gives an expression for obtaining the difference
to be applied to the uncliminated ¢/(0) in order to obtain the true
c(A), and formula (390) gives an expression for obtaining the true
amplitude R(A). These formulas cannot, however, be rigorously
applied, because the true values of B(B) and ¢(B) of the disturbing
constituents are, in general, not kuown, but very satisfactory results
may be obtained by using the approximate values of R(B) and ¢(B)
derived from the analysis or by inference.

By a scrics of successive approximations, using each time in the
formulas the newly eliminated values for the disturbing constituents,
any desived degree of refinement may be obtained, but the first
approximation is usually sufficient and all that is justified because
of the greater irvegularities existing from other causes.

251, Form 245 (fig. 19) provides for the computations necessary in
applying formulas (389) and (390). In these formulas the factors

3 < 1 o
represented by 1;?—0 sin (b= and the angles represented by

Th—a)r
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3(b—ea)r will depend upon the length of series; but for any given
length of series they will be constant for all times and places.  Table
29 has been computed to give these quantities for different lengths
of series.  The factor as directly obtained may be either positive or
negative, but for convenience the tabular values are all given as
positive, and when the factor as direetly obtained is negative the
angle has been modified by £180° in order to compensate for the
change of sign in the factor and permit the tabular values to be used
directly in formulas (389) and (390).

252. An examination of formulas (389) and (390) will show that the
disturbing effect of one constituent upon another will depend largely

sin 3(b—a)r.

upon the magnitude of the fraction — b—ajr Assuming that b is
not equal to a, this fraction and the disturbing effect it represents will

, . . 360°
approach zero as the length of servies » approaches in value B—a)

any multiple thereof, or, in other words, as 7 approaches in length
any multiple of the synodic period of constituents A and B. Also,
since the numerator of the fraction can never excced unity, while the
denominator may be increased indefinitely, the value of the fraction
will, in general, be diminished by inereasing the length of series and
will approach zero as = approaches infinity., The greater the dif-
ference (b—a) between the speeds of the two constituents the less
will be their disburbing effects upon each other. For this reason the
effects upon each other of the diurnal and semidiurnal constituents
are usually considered as negligible.

253. The quantities £(B) and ¢(B) of formulas (389) and (390) refer
to the true amplitudes and epochs of the disturbing constituents.
These true values being in general unknown when the elimination
process is to be applied, it is desirable that there should be used in the
formulas the closest approximation to such values as are obtainable,
If the series of observations covers a period of a year or more, the am-
plitudes and cpochs as directly obtained from the analysis may be
considered sufficiently close approximations for use in the formulas.
For short series of observations, however, the values as directly
obtained for the amplitudes and epochs of some of the constituents
may be so far from the true values that they are entirely unservice-
able for use in the formulas. In such cases inferred values for the
disturbing constituents should be used.

LONG-PERIOD CONSTITUENTS

254, The preceding discussions have been especially applicable to
the reduction of the short-period constituents—those having & period
of a constituent day or less. They are the constituents that deter-
mine the daily or semidaily rvise and fall of the tide. Consideration
will now be given to the long-period tides which affect the mean level
of the water from day to day, but which have praetically little or no
effcct upon the times of the high and low waters. There are five
such long-period constituents that are usually treated in works on
harmonic analysis—the lunar fortnightly Mf, the lunisolar synodic
fortnightly MSf, the lunar monthly Mm, the solar semiannual Ssa,
and the solar annual Sa. The first three are usually too small to be
of practical importance, but the last two, depending largely upon



88 U, §, COAST AND GEODETIC SURVEY

meteorological conditions, often have an appreciable effect upon the
mean daily level of the water.

255. T'o obtain the long-period constituents, methods similar to
those adopted for the short-period constituents with certain modifica-
tions may be used. For the fortnightly and monthly constituents
the constituent month may be divided into 24 equal parts, analogous
to the 24 constituent hours of the day. Similarly, for the semiannual
and annual constituents the constituent year may be divided into
24 equal parts, although it will often be found more convenient to
divide the year into 12 parts to correspond approximately with the
12 calendar months.

256. Instead of distributing the individual hourly heights, as for the
short-period constituents, a considerable amount of labor can be
saved by using the daily sums of these heights. The mean of each
sum is to be considered as applying to the mlddlo instant of the period
from 0 hour to 23d hour; tn‘w is, at the 11.5 hour of the day. If the
constituent month or year is divided into 24 equal parts, the in-
stants separating the groups may be numbered consecutively,
like the hours, from 0 to 23, with the 0 instant of the first group
taken at the exact beginning of the series. A table may now be
prepared (table 34) which will show to which division cach daily
sum, or mean, of the series must be assigned.

257. ]‘_mtt,mg

a==the hourly speed of any constituent, in degrees,

p==1 when applied to a monthly or an annual constituent, and
p=2 when applied to a fortnightly or a semiannual constituent.
d==day of series.

s==solar hour of day

Then
. . . 360 _
1 constituent p(‘l’lodx'*a" solar hours (391)
and
1 constituent monthmi@(%ﬁ solar hours (392)
also
360p
1 constituent years=--_= 2 solar hours (393)

Dividing the constituent month or year into 24 equal parts, the
length of

. o e 15p ,
1 constituent division== o solar hours (394)
Therefore, to express the time of any solar hour in units of the con-
stituent dlvmonq to which the solar hourly heights are to be assigned,
the solar hour should be multiplied by the factor a/15p.
Thus,
Constituent division== J 5 (solar hour of series)
— [?4(d~«1) 48]

157{24(01 1) 11.5] (395)
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since in using the daily sums, the solar hour of the day to which each
steh sum applies will always be 11.5 hour.
By substituting the speeds of the constituents from table 2 the

. . . . - @
following numerical values are obtalned for the coefficient Nﬂ’g};:

Mf, 0.036,601,10; MSf, 0.033,863,19; Mm, 0.036,201,65;
Sa and Ssa, 0.002,737,91.

By using the appropriate cocflicient and substituting successively
the numerals corres ponding to the day of series (d), the 60110&:])011(1111‘7‘

value of the C(msmtuent <hvmon to which cach daﬂy sum 18 to be
assionod may be readily obtained. The value of such division as
obtained ¢ lircetly from the formula will usua Iy be a mixed number.
For table 34 the nearest integral number, less any multiple of 24, is
used.

258. The distribution of the daily sums for the analysis of the | long-
period constituents may be ((mwulomlv zwomphsho(l by copying
such sums in Form 142 (fig, 12), taking the constituent divisions as
the equivalents of the constituent hours and using table 34 to deter-
mine the division or hour to which each sum should be zl,ssigno(‘l.
The total sum and mean for each division may then be reac ilv ob-
tained. These means can then be treated as the hourl y means of the
short- 'pmiod tides according to the proc (‘%s(‘s outlined in Form 194
(fig. 16) with such modifics \tions as will now be described.

259. In using the daily means as ordinates of a long-period constitu-
ent consideration must be given to the residual effects of any of the
short-period constituents upon such means and steps talken to clear the
means of these effects wh (m necessary.  Constituent 5, with a period
commensurate with the solar day, may be considered as being com-
pletely eliminated from each daily mean. Constituents K, and K,
are very nearly eliminated because the K day is very nearly (‘quafl
to the solar day. Other short-period constituents may allect the
daily means to a greater or less extent, depending largely upon their
amplitudes.  Of these the prine ipal ones are constltuonts M, Ny, and
O In the distribution and grouping of the daily means for the
analysis of the several lonmp(\lwd constituents the (hxblubmo effects

ol the short- period constituents just enumerated, excepting tho effects
of My upon MSBE, will be greatly reduced, and in a series covering
several years may be pract gicall y (\hmmat(‘(l Because the period of
MBI is the same as the synodie pmm(l of M, and 3, there Wlll always
remain a residual effect of the (onstltuvn t M, in the constituent MSt
sums of the daily means, no matter how long the series, which must
be removed by a special process.

260. Let the equation of one of the short-period constituents be

y=A cos (al-} ) (396)

Letting d==day of series, the values of ¢ for the hours 0 to 23 of d
day will be

24(d—1), 24(d—1D) 41, 24(d—1)+2, . . . . 24(d—1)-}-23.

Substituting these values for ¢ in (396) and designating the corre-
sponding values of the ordinate Y as Yo, Y, Y2 - « . . Yuu the following
are obtained:

‘P_
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yy == cos 2Ad— D a- ard]
¥a = A cos [24(d—1)a-t a+2a] 397)

g < cos (24 (d— 1)+ a- 23]

Representing the mean of these 24 ordinates for d day by ., we have

Va5 Acos 124(d—Da--a; [L4-cos a-tcos 204 --cos 23a]
g <lsim (24 (d— 1) e fsin d-bsin 20 ..o sin 23]
! .
a4 ok eos Ty
.y L
24d =)o s a
1, sin 12a . . -
ST eos 24 (d - D e 1150 1 (398)

24 7 in

261. Formula (30%), representing the average value of the constitu-
ont A ordinates contained in the daily mean for d day, is the correction
or clearance that must be subtracted from the mean for that day in
order to oliminete the effects of A, Tt will be noted that il we let
.1 represent any of the solar constituents, Si, Sy, Sy, Sy, ete., the
factor sin 12a, and consequently the entire formula, becomes zero for
all values of /. By formula (398) clearances for each of the disturbing
short-period constituents for each day of series may be computed and
these clearances then applied individually to the daily means, or, if
first multiplied by the factor 24, to the daily sums.

962. The labor involved in making independent caleulations for
the elearance of the effeet of cach short-period constituent for each
day of series would be considerable, but this may be avoided to a
laree extent by means of a tide-computing machine,

it wo lot #==time reckoned in mean solar hours from the beginning
of the series. then for any value of yg. which must apply to the 11.5
hour of d day,

94 (,] '1) 4-11.5
and
at=24(l— Da-11.5u (399)

1 the above equivalent is substituted in (398) and g replaced by
Yoo wWe have

sin 120

L oo (tt-- ) (404

WYa==

which represents a continuous funetion of trand for any value of ¢
corresponding to the 115 hour of « day the corresponding value of
yo will be yq. This formula is the same as that for the short-period
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constituent .4, except that it includes the factor 5~~~ in the
24 sin %a

coefficient. The speed ¢ is a known constant and the values of A
and « are presumed to have already been determined from the har-
mouic analysis of the short-period constituents. Similarly, the dis-
turbing effects of other short-period constituents may be represented

by

1 sin 125

Yo=gz B o 15 cos Gt+-6)
1 sin 12¢

Yo=57 C Sinde 08 (ct-F) (401)
cte.

The combined disturbing effect of all the short-period constituents
may, therefore, be represented by the equation

1 sin 12
?/’-‘—“-?/a"'l“?/a“}"etc':’é“/i A 2%*{&@ cos (at+a)
1 ., sin 125 .

263. This formula is adapted to use on the tide-computing machine.
With the constituent cranks set in accordance with the coefficients
and initial epochs of the above formula, the machine will indicate
the values of ¥ corresponding to successive values of £. The values
of ¥ desired for the clearances are those which correspond to ¢ at the
11.5 hour on each day. Thus, the clearance for each successive day
of scries may be read direetly from the dials of the machine. In
practice, it may be found more convenient to use the daily sums
rather than the daily means for the analysis. In this case the co~
efficients of the terms of (402) should be multiplied by the factor 24
before being used in the tide-computing machine,

264. Assuming that all the daily sums are used in the analysis, the
augmenting facter represented by formula (308) which is used for
the short-period constituent is also applicable to the long-period con-
stituents, with p representing the number of constituent periods in a
constituent month or year. Thus, for Mm and Sa, p equals 1, and
for Mf, M&f, and Ssa, p equals 2. For the long-period constituents a
further correction or augmenting factor is necessary, because the
mean or sum. of the 24 hourly heights of the day is used to represent
the single ordinate at the 11.5 hour of the day.

265, If we let formula (396) be the equation of the long-period
constituent sought, formula (400) will give the mean value of the 24
ordinates of the day which, in the grouping for the analysis, is taken
as representing the 11.5 hour of the day or the ¢, hour of the series.
Since the true constituent ordinate for this hour Sho'ulci be A cos
(ata+ ), it is evident that an augmenting factor of 24 5;;1122(2 must be
applied to the mean ordinates as derived from the sum of the 24
hourly heights of the day in order to reduce the means to the 11.5
hour of each day.
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266. The complete augmenting factor for tae long-period constit-
uents, tho year or month bmng represented by 24 means, will be
obtained by combining the above factor with that given in formula
(308). Thus

TP 24 sin $a
. 1Ep7 sin 12a
24 s ~—;)~Z~-

augmenting factor== (403)

[f the year or month is represented by only 12 means as when monthly
means arve used in evaluating Sa and Ssa, the formula beeomes

1

«

o 24 sin

(404)

augmenting factor= :
e A 12 sin 15p 7 sin 124

Values obtadned from these formudas ave given in table 20,

267. The following method of reducing the 10n<>ap(‘1'i0<l tides, whieh
conforms to the system outlined by Siv George H. Darwin, differs to
aome extent from that just deseribed, Tn this (lismmsion 1t 1s assumed,
that a series of 365 days s used, Let the entive tide due to the five
long-period constituents already named be vrepresented by the equation

y==.1 cos (af-=o)- 0 <(>s l;f ) O con (at--) (405)
1) cos ,(/1‘ L cos ((’L":{'«Tl)

268. For convenience in this discussion let ¢ be reckoned from the
F1.5th solar hour of the first day of series nstead of the midnight
beginning that day. Every value of ¢ to which the daily means refer
will then be either 0 or a multiple of 24,

Lot A0 87, ¢ D, and [0, equal
Acos a, Beos B8, (Ccosy, [Deos s, and I¢ cos ¢, respectively, and

AR DY and 1) equal
— 2 sin @, — B sin B, —("sin vy, — 1 sin §, and — [V sin ¢, vespeetively,
(406)

Then formula (405) may be written

A cos at-- B cos bl cos et =D cos di-f- 1Y cos et
A7 st al-+ B sin bt (77 sin eb D7 sinc dER I sin et (407)

S

In the (11)0\'«\ equation there are 10 unknown quantities, 47, A",
BB, etey, for which values are songht inorder to obtain from them
(he umphtml(s and epochs ol the five long-period constituents. The
most probable values of these quantities may be found by the least
square adjustment,

289. Loty w0 s vepresent the daily means for a 365 day
series, as obtained from observations.  H we Tet n be any day of tlm
series. the value of £ to which that mean applies will he 24(n—1).
By substituting in formula (407) the suceessive values of y and tlm
vadues of ¢ to which they correspond, 365 observational cquations are
formed as follows:
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yi=A" cos 048" cos 0
E' A7 sin 0--8B7 sin 0--
=47 cos 2da- =B cos )4()4 .
*1 7 sin 24 } B’ sin 24()~I~ ..

,_.'.

,_»
~
o
=
<
)
\D
B
)
C‘
,,;
gy
fay
\
W
N
o
o
AT
Lo
e
o
g
‘.(
P
Q\ :

'Z/.’i(m

—{A-A” sin 24 pe ’()4((«-I-B” sin 2 ><3()1b i
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(408)

270. A normal equation is now formed for each unknown quantity
by multiplying each observational equation by the coefficient of the
unknown (uantity in that equation and adding the results.

for the unknown quantity A/, we have

Iy COS ()--":A (0»~ OB cos 0 cos O .
A7 sin 0 cos 0487 sin 0 cos 0-- .+,

T eost 24a--B cos 24b cos 24a-+ .

‘_‘

s COS 21»1-(

£

-

Yag; COS (24 \/<2)()/ (1) A7 cos® (24 X 364a)

-+ cos ‘:,,4.,\.3()11)) cos (242 364a) -
A sin (24 3C364a) cos (243 364a4)
137 sin (24X %()41)) cos (‘71,\( 36da) i

£

Swmniming

2. Yo €08 24 (n-—1)a= A’n_::; cos? 24 (n—1a

i

24 (1) cos
3 24 (n—1)b cos
24(n—1)b cos

5 24 (n—1)e cos

in 24(n—1)e cos

24 (n—1)e cos

A7 sin 24 cos 24a--B" sin 246 cos 24y -

s 24 (n—1)d cos 2

24(n—1)d cos 24

24 (n-Da
24 (n—1)a
24 (n-—1)u
24 (n—1)u

94 ( n-—1a

24(n—1Da

5 24 (n—1)a

which is the normal equation for the unknown quantity A’
271. In a similar manner we have for the normal equation for the

quantity A"

Thus,

(409)

“1

0)
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= Yn sin 24(7?/“""1)(1/
= A’ 3 cos 24 (n—1)a sin 24 (n—1)a-+A" 2 sin® 24(n—1)e
4B’ 2 cos 24 (n—1)b sin 24 (n—1)a+B" 2 sin 24 (n—1)b sin 24 (n—1)a
4+ 0" % cos 24(n—1)e sin 24 (n—1)a-+C" 2 sin 24(n—1)¢ sin 24(n—1)a
+D7 % cos 24 (n—1)d sin 24 (n—1)a-+D" Z sin 24 (n—1)d sin 24 (n—1)a
+E" % cos 24 (n—1)e sin 24 (n—1)a--L" 2 sin 24 (n—1)e sin 24(n—1)a
(411)

the limits of n being the same as before.
Normal equations “of forms similar to (410) and (411) are ecasily
obtained for the other unknown quantities.

272. By changing the notation of formulas (265) to (267) the fol-
lowing relations may be derived:

11365 sin 24na cos 24(n—1)a
2 04 — in 4L
nzl) cos? 24 (n—1Da=%in-}3 S 94a

, sin 8760a cos 8736a

3. €
=1823-13 sin 24q (412)
. —D)a=bn—1 sin 24na cos 24(n—1)a
E sin® 24 (n— V) a==4n-— S 9da
—1823—3 sin 8760 cos 8736a
1823 sin 24a (413)
n==365
§:, cos 24(n-—1)b cos 24(n—1)a
—1 sin 12n(b- M(L) cos 12n—1)(b—a)
sin 12(b—a)
w%Jsiin 12n(b-+a) cos 12(n—1) (b-+}a)
B sin 126+ a)
1sm 4'380(1)"*(1) cos 4368 (b—a)
sin 12(6—a)
, 8in 4380 (b+a) cos 4368(b+a)
i sin 12(b+a) (414)
n=365 .
= sin 24(n—1)b sin 24(n—1)e
n=1
1 sin 12n(b-a) cos 12(n—1) (b—a)
sin 12(b—a)
4 sin 12ﬂ(b+a) cos 12(n—1)(b-+a)
e sin 12(b-+a)
4 sin 4380(6 a) cos 4368(b—a)
=i sin 12(b—a)
—3 %m 4‘380(5 @) cos 4368(b-a) (415)

sin 12(b+-a)



HARMONIC ANALYSIS AND PREDICTION 0OF TIDRES 95

n==365

>3 sin 24 (n—1)b cos 24(n—1)a

T sin 120(b—a) sin 12(n—1) (b—a)
o sin 12(b—a)
1 S 120 (bora) sin 12(r— (b~
b sin 12(b-++a)
,,,,, . sin 4380(b—a) sin 4368 (b— )
2 sin 12(b—a)

1 sin 4380 (h--«) sin 4368(b G (416)
b sin 12(b-}-a) '

273. By substituting in (412) to (416) the numerical values of
a, b, ete., from table 2, the corresponding equivalents for these
expressions are obtained. These, in turn, may be substituted in
(410), (411), and similar equations for the other unknown quantities
to obtain the 10 normal equations given below. In preparing these
equations the symbols a, b, ¢, d, and ¢ are taken, respectively, as the
speeds of constituents Mm, Mf, MSI, Sa, and Ssa.
n=365

2 n €08 24 (n—1)a
n=1

= 1830547107287 - 0.76(7 -4 &) - 4.96 £

+2.14.47 442987 +4-5.040" —0.34 D" —0.70 £ ,
n= 365 \41 7%1)

> Y sin 24 (n—Da

n=1
=2 144~ 4158 — 4 900" 3801 -+ 3. 88 7
+181.95A4” +4-1.01B” 4 1.06C" +0.34 1" - 0.68 2"
n=365

2 Ya c0s 24(n—1)b
n=1

=0.72A7-F 183178 4-0.56C" — 1,500 —1.51 I’

—4. 154" -0.88B"--0.92C" —0.00D" —0 181" .
- 4.15 F0.888"4-0.92C" —0.00D INEYE (417b)

> sin 24 (n—1)b

n=i
=4.294"-1-0.888"-0.92C" -+ 3.05Y +3.06 F
+-1.01.A47-+181.83B" ~—0.80C" —0.081)" —0.17 12"
n=365
Yn €08 24 (n—1)e
n=1j
=0.76.A"-1-0.565"4-183.19C" —1.681) — 1.70 [’
—4.90A4" +0.928” 4 0.970" —0.11D" —0.21 i’ (417¢)
n:::ﬁ.'%ﬂ.")

2 i sin 24 (n—1)¢

=504 47409287 +0.97C" +3.24D" -+-3.25 [
+1.0647 —0.80B" - 181.810" —0.10D" — 0 20"

> Yn cos 24 (n—1)d
=1

=4 88 A — 1 508"~ 1.68C" - 182,381 —0.24 [
+-3.80A47 +3.06B” --3.24C” - 0.00D” 40,01 2

Z?/ Yu sin 24 (n— 1)CZ
n=1

== 0,344 —0.008"—0.110"--0.000 +0.00 5’
+0.34A47 —0.088" —0.100" - 182.62D”" -1 0.00 1"

(417:0)
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n= 363

> Yn c0s 24 (n—1)e

ne=l
=24,96.4" —1.518"— 1.700"—0.240 --182.38 11/
4-3.88A47--3.068" 4 3.25C" -0.00D"-0.00.L"
=363

S Ya sin 24 (n—1)e
n=1
= 0,704 —0,188"—0.21C" -0.01D" 4-0.008
+4-0.6847 0. 178" —0.200"-+0.00D" --182.62 1"

(417¢)

274, The numerical value of the first member of cach of the above
normal equations is obtained from the obscrvations by taking the
sum. of the product of each daily mean by the cosine or sine of the
angle indicated.  The solution of the equations give the values of A’
AT B, B, ete., from which the corresponding values of quantities
A and o, B and 8, ete., of formula (405) are readily obtained, since

A

in ealculating the corrected epoch, it must be kept in mind that the
¢ in this reduction is referred to the 11.5 hour of the first day of series
instead of the preceding midnight.

275. Bofore solving equations (417), if the daily means have not
alveady been cleared of the effects of the short-period constituents, it
will be necessary to apply corrections to the fivst member of each of
these equations in order to make the clearances.

The disturbance in a single daily mean due to the presence of a
short-period constituent is represented by cquation (398). Intro-
ducing the subseript s to distinguish the symbols pertaining to the
short-period constituents, the disturbance m the daily mean of the
¥ day of series due to the presence of the short-period constituent
Ay may be written

Dyt 11505+ o) (418)

The disturbances in the products of the daily means by
cos 24(n—1)a and sin 24 (n-—1)a
may thercfore be written

[ela cos 24(n—1)a

[cos {24 (n—1) (ay-+a) 1150} o}

“eos (24 (n—1) (as—a)--11.5a,ta}]  (419)
and

[Yoln sin 24 (n— 1)«

[sin {24 (n—1) (@) 411505} oy}

—sin {24(n—1) (eg—a)-+11.5a,-F ay}] (420)
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276. Then, referring to formulas (263) and (264)

=364

5 [Wsla cos 24 (n—1)a=

n=:1

1 A sin 12a, [ sin 12X 365 (¢s-1-a)

48 7 gin £a, sin 12 (e, a)
sin 12X 365 (a,

+ 12!((1‘ ma:;a) cos {12364 (as—a)-+11, )(18-»;-‘%}“‘ (421)

cos {125¢364 (a,-+a) 1150, + o)

and

=365

Z,: h/qln sin 24 (7L"" 1)(1 =
n=1
1 sin 124, [%m 12X 365(as-+ a)

48 sin ia, sin 12(ay-Fa)  °
sin 12X365(@s—a) . 0 an g .
e 19 () sin {12364 (ay— ) --11.5¢,- ag}m (422)

(12364 (g @) + 1150 o}

Now let
Al y= Ay cos ay
and (423)
A”s":: ~—As sin e

then (421) and (422) may be reduced as follows:
n =365

2_4 Waln cos 24(n—1)a

Ty

1% sin 12 X365 (ag—t« ) .
1 sin Z(Iq[ i 12X 365(a,-+a) 08 {12364 (ay-t-m) - 11.5,)

TA8 s b sin 12 (e )
sin 124 365 (¢,—
sin 12 (t,—a)

1 osin 12a, | sin 123365 (- (1) RN
Jioh 12 5a.
]48 Sin da. [ 364 (ag-a) =115y}

sin 12 (as-Fa)
sin 12X 365 (a,—a)

@) o (123364 (a,—a) -+ 11.5a,} A7,

- DN 04 e () e ,//‘J 2
B 19(0.—a) sin {12364 (a,—a) -+ 11.5a, _/1 . (424)
and
= 365
ZJ sl sin 24 (n— a
n=

1 sin 12a,[sin 12 X365 (ag-1@) sin 7127364 (a,--a) - 11.5ay}
48 sin Hay sin 12 (a,1-a)

SN 2XBO5 () T
" 12 (te—a) sin {12 X364 (a—a)-+11.5asr |4

cos L 124364 (a,+a) -+ 1150,

i

1 sin 12a, [ sin 123X 365(a,--a)
48 sin $a, sin. 12 (ag-+a)
sin 12X 365 (a,—a)

— ; s 19N 364 V1T B0 L 425
Sin 12 (d,—a) cos {12X364 (a,—a) - 11,,)(15,}1 (425)
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277, Formulas (424) and (425) represent the clearances for any
long-period constituent 4 due to any short-period constituent A,.
The first must be subtracted from terms corresponding to
Pyacos 24(n—1)a and the latter from terms corresponding to
S sin 24(n-—1a of formula (417) before solving the latter.

278. In (424) and (425) the coeflicients of A’y and A, which
for brevity we may designate as €7, ¢, 8, and 8", vespectively,
contain only values that are constant for all scries and may therefore
be computed onece for all. Separate sets of such coellicients must,
however, be computed for the effcet of each short-period constituent
upon each long-period constituent.  In the usual reductions in which
the effects of 3 short-period constituents upon 5 long-period con-
stituents are considered, 15 sets of 4 coeflicients each, or 60 coefficients
in all, are required.

The coeflicients are given in the following table: *

Long-period constituents

| oaom ] ot | wst | s Ssa

| | , |
| =0.0556 | --0.0080 | 4579 | 01001 =0 1046
~0.1708 | —0.0877 | ~2933 | —0.0752 | —0.0755
01708 | 40.0117 | 20810 | —0.0018 | —0.0085
00841 | H0.0105 7 —5.727 | -H0.0048 | 0,000

i
~0.0588 | --0.0368 | -H0.0204 | —0.06 | —0.0176
—0.0776 | ~0.2236 | —0.1038 | +0.0025 |  -10.0025
~0,0206 | ~0.1626 | —0.1221 1 0,002 | -0, 0004
0.1188 | —0.0854 | —0.0808 1 0,000 | --0.0002
Oy (¢ —0.0648 | +0.0166 | --0.0157 | —0.1024 | —0, 1934
(G —0.3476 | —0.0778 | ~0.0816 | —0.1826 |  —0.1831
~0.3452 | 10.0841 | -F0.0875 | —0.00%6 |  ~0.0063
RO.DIOS | -HO.0S | -HO.031 | 0,000 | 0. 0180

t

Tn the above table the sign is so taken that the values are to be
applied to the sums directly as indicated.

279. After the clearances have been applied and the normal equa-
tions (417) solved and the resulting amplitude and epoch obtained for
each of the long-period constituents, the reductions will be completed
in accordance with the processes already outlined, but it must be kept
in mind that in this reduction the initial value of ¢ is taken to corre-
spond to 11:30 a. m. on the first day of series. In obtaining the nu-
merical values of such quantities as 2y, cos 24(n—1)e and Zy, sin
24(n—1)a, in order to avoid the labor of separate multiplications for
each day, the following abbreviations have been proposed by the
British authorities. 'The values of cos 24(n—1)a and of sin 24(n—1)e
are divided into 11 groups according as they fall nearest 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0. The daily values are then dis-
tributed into 11 corvesponding groups, so that all values in one group
will be multiplied by 0, another group by 0.1, ete.  The cos 24(n—1)a
and sin 24 (n—1)a include negative as well as positive values. The
former are taken into account by changing the sign of the daily mean
to which the negative values apply.

280. As 2 part of the routine reductions of the tidal records from the
principal tide stations it is the practice of the office to obtain the
mean sea level for cach calendar month. It is thorefore desirable to

*From Scientific Papers by 3ir George H, Darwin, Vol. T, p, 64,
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have a method of using these means directly in the analysis for the
annual and semiannual constituents, thus avoiding any special sum-
mation for the purpose. The period of the annual constituent is ap-
proximately the length of the Julian year, that is, 365.25 days. If this
period is divided into 12 equal groups and the mean of the hourly
heights for cach group taken, these means represent the approximate
height of the combined annual and semianmual constitucnts for the
middle of each group, and the middle of the first group will be the
mitial point from which the zeta (§) as obtained by the usual process
is referred.  As cach group represents 30° of motion for the annual
constituent, or 60° for the semiannual constituent, to refer this ¢ to
the actual beginning of the series of obscrvations it will be necessary
to apply a correction of 15° for the annual constituent or 30° for the
semiannual constituent.

281. In obtaining the monthly means by calendar months the year
is divided only approximately into 12 equal groups. The following
table shows the difference between the middle of cach group repre-
senting a calendar month and the middle of the corvesponding group
obtained by dividing the Julian year into 12 equal parts. It is to be
noted that the hourly heights ineluded in a monthly sum extend from
0 hour on the first day of the month to the 23d hour on the last day.
The middle of the group as reckouned from the beginning of the month
will therefore be 13.98 dayvs, 14.48 days, 14.98 days, or 15.48 days,
respeetively, according to whether the month has 28, 29, 30, or 31 days.

Middle of group reckoned P aran
from beginning of yenr Differences
Aonth
Julian | Common| Leap Common| Leap
year year year year vear
Days Duys Days Days Days
January . o 15,22 15,48 15. 48 -+, 26 ~+0. 26
[February. ... 45, 66 S 08 —(. 68 —0. 18
Mureho oo o0 09 ThA8 ~1. 61 —{), A1
April 106, 53 104, 98 — 1. 85 —A{). 55
May 136,07 136. 4% ~1.49 —0, 49
June 167,41 165, 08 ~1.43 —{). 43
Juty R 197,84 6, 48 —1.36 ~0. 36
Augnst oL 228, 28 227,148 -, 80 -+0. 20
September. 268,72 253708 -0, 74 -0, 26
Octaber 28816 28K, 48 -0, 68 -0, 32
Noavember. . 3149, 59 S8 08 —0. 61 -+0.39
December. .. ... L. 3650, 03 310,48 -, 55 0. 45
SSUANE . L it e e .. I —~11. 24 —0. 74
Means. . .. —{, 04 ~(). 06
Speed of Sa eonstituent per day=0.0846°, © 4
Mean differences redieed to degrees of Sa ~0, 03 -0, 06
Correction to ol Sa Lo ... ... 4,07 14. 94
Correction to ¢ of Ssa .. 28. 14 24, 88

282. From the above table it is evident that in the summation for the
monthly means for a calendar year the middle of cach group of a
common year is on an average 0.93° carlier than the middle of the
corresponding group when the Julian year is equally subdivided
and the middle of each group of a leap vear is on an average 0.06°
carlier.  Subtracting these values from 15°, the interval between the
beginning of the observations and the middle of the first group of an
equal subdivision, we have 14.07° and 14.94°, for common and leap
vears, respectively, as a correction to be applied to the ¢ of Sa as
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divectly obtained, in order to refer the ¢ to the 0 hour of the 1st day
of January. Ior Bsa the corrections will be twice as great.

283. If the year commences on the first day of any month other than
January, the corrections will differ a little from the above. Calculated
in a manner similar to that above, the following table gives the
correction to be applied to the ¢ to refer to the first day of any month
at which the series commences. The correction to the ¢ of Ssa will
be twice the tabular value for Sa.

Correction to { of Sa Correction to { of Sa
to refer to begin- to refer to begin-
ning of month ning of month

Obhservations commence— | _ Ohservations commence-- . —

Common Leap Common| Leap

year year year year

o o o o

Jan. Lo 14, 07 14,94 15. 56 15.93
Feb. 1. .. 13. 50 14,46 14.98 16. 43
Mar. 1. . 15. 89 15,93 14. 41 14,94
Apr, 1., R 15,31 15,43 14,82 15, 43
May 1.. - 15,72 15. 08 14,24 14.94
June Lo 15,18 15. 43 14. 65 15,43

284. If the monthly means extend over many calendar years, it may
be convenient to combine them for a single analysis. In-this case the
(Votu) for January 1 may be taken as the average of the values for
the beginning of each year included in the observations, and the
correction to the ¢ to vefer to the beginning of the year will be a mean
of the values given above for common and leap years, weighted in
accordance with the number of each kind of year included. If only
a few years of observations are available, it is better to analyze each
year separately in order that the results may serve as a check on each
other.

285. The augmenting factors to be used for constituents Sa and Ssa
when derived from the monthly sea level values are based upon for-
mula (404) in paragraph 266 and are as follows:

Sa 1.0115, logarithm 0.00497.
Ssa 1.0472, logarithm 0.02003.

ANALYSIS OF HIGH AND LOW WATERS

286. The automatic tide gage, which furnishes a continuous record
of the rise and fall of the tide, now being in general use, it is seldom
necessary to rely ouly upon the high and low waters for an analysis,
It may happen, however, that a record of high and low water observa-
tions 1s avallable for a more or less isolated locality where it has been
impractical to secure continuous records. Such records, if they in-
clude all the high and low waters for a month or more may be utilized
in determining approximate values of the principal harmonic con-
stants, but the results are not as satisfactory as those obtained from
an analysis of the hourly heights.

287. An elaborate mode of analysis of the high and low waters is
contained in volume 1 of Selentific Papers, by Sir George . Darwin.
Other methods are given by Dr. R. A. Harris in his Manual of Tides.
The process outlined below follows to some extent one of the methods
of Doctor Harris, extending his treatment for the K and O to other
constituents.
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288. The lengths of series may be taken the same as the lengths
used as the analysis of the hourly heights (see par. 152). 1t is some-
times convenient to divide a series, whatever its length, into periods of
29 days each. This permits a uniform method of procedure, and a
comparison of the results from different series affords a check on the
reliableness of the work.

289. The first process in this analysis consists in making the usual
high and low Wat,or reductions, mcluding  the computation of the
lunitidal intervals. Form 138 provides “for this reduction. The
times and ]inht&, of the high and low waters, together with the times
of the moon’s Lmn&,l{s, are tabulated. For convenience the standard
time of the placo of (>bsmvab10ns may be used for the times of tho
high and low waters, and the Greenwich mean civil time of the moon’s
transits over the meridian of Greenwich may be used for the moon’s
transits. ’.I.‘ho, interval between each transit and the following high
and low water is then found, and the mean of all the high water
intervals and the mean of all the low water intervals arve then obtained
separately. "The mu(‘ mean Intervals between the time of the moon’s
transit over the local meridian and the time of the following high and
low waters being desived, the means as directly obtained must be
corrected to allow for (my difference in the kind of time used for the
transit of the moon and the time of the tides and also for the difference
in time between the transit of the moon over the local meridian and
the tx'z‘u‘xsit over the meridian to which the tabular values vefer.

290. If the tide is of the semidiurnal type, the approximate ampli-

tude and epoch for M, may be obtained direetly from this high and
low water reduction. On aceount of the ])ICH(‘HC(‘ of the other con-
stituents t’l v mean range from the high and low watbers will always
be a little larger than m ice the amplltudb f M, If the data are
availlable fm some other station in the Oonmal locality, the ratio of
the M, amplitude to the mean range of “ide at that station may be
used in finding the M, amplitude from the mean range of tide at the
station for which the results are sought. 1If this ratio cannot be ob-
tained for any station in the Oonoml locality, the empirical ratio of
0.47 may be used with fairly %atmmctmy results.  After the ampli-
tude of M, has been thus obtained, it should be ('ouoctol for the
longitude of the moon s node by hctm Ffrom table

29 . The epoch of My may be obtained from the oouoctm { high and
low water lunitidal intervals HWI, LWI by the following formula:

MOy (W LWI) <28.984--90° (426)

T the above formula AW must be greater than LW/, 12.42 hours
being added, if necessary, to the HWT as directly obtained from the
hieh and low water reductions.

292. The diffevence between the average duration of rise and fall
of th(\ tide at any place, where the tide is of the semidiurnal type, de-
pends largely upon the constibuent My, 1t is possible to ()bt,am from
the high and low waters a constituent with 1[1(. speed of M, which,
when used in the ha,mnonic prediction of the tides, will cause the mean
duration of rise and fall to be the same as that at the station. The
effect of M, upon the mean duration of vise will depend chiefly upon
the velation of its amplitude and epoch to the am) )11t11(lo and epoch
of the principal constituent M, By assuming an M, with epoch
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such as to make the constituent symmetrically situated in regard to
the maxima and minima of M,, the amplitude necessary to account
for the mean duration of rise of the tide may be readily calculated.

293. Let DR==duration of rise of tide in hours as obtained from
the lunitidal intervals,

a=1Hourly speed of M,;.==28.°984,
M,=Amplitude of M,.
My =Epoch of M,.
M= Amplitude of M,.
M,°=Epoch of M,.

Then, for M, to be symmetrically situated with respect to the maxima.
and minima of M,

I\LomZ Mgo:{;.()()o (4:27)

in which the upper or lower sign is to be used according to whether
a(DR) is greater or less, respectively, than 180°. Multiples of 360°
may be added or rejected to obtain the vesult as a positive angle less
than 360°,

The equations of the constituents M, and M, may be written

Y1=M, cos (at-} ) (428)
Yo== M, cos 2at-p) (429)

and the resultant curve
y=Mj; cos (at-} ) -+M, cos 2ai--8) (430}

294. Values of ¢ which will render (428) a maximum must satisfy
the derived equation.

aM,; sin (@t} a)==0 431)
and for & maximum of (430) ¢ must satisfy the derived equation
aM; sin (at-+ ) -2aM, sin (2ai--8) =0 (432)
For a maximum. of (428)
2nw—ao
==t (433)

in which # is any integer.
295, Let ff‘: the acceleration in the high waters of M, due to the
presence of M, With the M, wave symmetrically situated with

0 . W e .
respeet to the M, wave, 7 will also equal the retardation in the low

‘) <
water of My, due to the presence of My, and —a—o will equal the total

amount by which the duration of rise of the tide has been diminished
by M;. If the duration of rise has been increased, 8 will be negative.
Then, for a maximum of (430)

_Onr—a—0
a

¢ (434)

and this value of ¢ must satisfy equation (432).
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298, Substituting in (432), we have

aM, sin 2nw =0)-F2aM, sin (dnr—20- B—20) = 435
8 —aM, sin 8—2aM, sin (20 -2a— B)=0 (435)
But

20— B=—27 < AL° (436)
Irrom (427)
M0 A MO == 4 90°
according to whether the duration of rise is greater or less than l%go:

or whether 6 is negative or positive.
Then

2q— B= T H0° (437)

according to whether 6 is positive or negative.
Substituting this in (435)

| —aM, sin 0- 2N, cos 26=10 (438)
anc
M4 sin 0 .
M T, (439)

the upper or lower sign being used according to whether 6 is positive
or negative. As undm the assumed conditions 6 must come within

the limits 445°, the ratio of M as devived from (439) will always be
positive,
%gg'? The duration of rise of tide due solely to the constituent My is
L

a
The duration of rise as modified by the presence of the assumed Ad,
is
8()° 20

DR =20 v (440)
a
Therefore .
0=3%(180°—«DR) (441)
Substituting the above in (439) we have
}_W} Sin (90°—3aDR)Y Jcos 3a DR .
M, T ¥eos (180°—aDR)~ " *cos aDR )
and
M= 308 2B 0 (443)

cos «DR

M, must be positive, and the sign of the above coellicient will depend
upon whether aDR is less or greater than 180°.

298. The approximate constants for S, Ny, I, and O may be
obtained from the observed high and low waters as follows: Add to
each low-water height the mean range of tide. Copy the high and
modified low water homhts into the form for hourly heights (toun 362),
always putting the values upon the nearest solar h()ul Sum for the
desired constituents, using Ul(‘ same steneils as are used for the regular



104 T. & COAST AND GEODIIIC SURVEY

unalysis of the hourly heights.  Account should be taken of the num-
ber of items entering into each sum and the mean for each constituent
hour obtained. The 24 hourly means for each constituent are then to
be analyzed in the usual manner. -

299. The results obtained by this process are, of course, not as
dependable as those obtained from 8 continuous record of hourly
heights. The approximate results first obtained can, however, be im-
proved by the following treatment if a tide-computing machine is
available. Using the approximate constants as determined above for
the principal constituents and inferred values for smaller constituents,
set the machine for the beginning of the period of observations and
find the predicted heights corresponding to the observed times of the
high and low waters. Tabulate the differences between the observed
and predicted heighis for these times, using the hourly height form
and ontering the values according to the nearest solar hour. These
differences are then to be summed and analyzed the same as the
original observed heights. In this analysis of the residuals the con-
stituent M, should be included. The results from the analysis of the
residuals are then combined with the constants used for the setting
of the predicting machine,

300. In making the combinations the following formulas may be
used:

Lot A7 and «” represent the first approximate values of the constants
of any constituent.

A7 and #”, the constants as obtained from the residuals.

A and «, the resultant constants sought.

Then

A==/ (A cos & A7 cos k") (A sin kA7 sin ")* 444)

and
LA sin kA" sin k"
A cos k' - A" cos k”

(445)

FORMS USED FOR ANALYSIS OF TIDES

301. Forms used by the Coast and Geodetic Survey for the harmonic
analysis of tide observations are shown in figures 9 to 19, A series of
tide observations at Morro, California, covering the period February
13 to July 25, 1919, is taken as an example to illustrate the detail of
the work.

302. Form 362, Hourly heights (fig. 9).—The hourly heights of the
tide are first tabulated in form 362. Although the zero of the tide
stafl is usually taken as the height datum, any other fixed plane will
serve this purpose. For practical convenience it is desirable that the
datum be low enough to avoid negative tabulations but not so low
as to cause the readings to be inconveniently large for summing.

303. The hours refer to mean solar time, which may be either local
or standard, astronomical or civil, but standard eivil time will generally
be the most convenient to use. The series must commence with the
zero (0) hour of the adopted time, and all vacancies in the record
should be filled by interpolated values in order that each hour of the
serics may be represented by a tabulated height. It is the general
practice to use brackets with interpolated values to distinguish them
from the observed heights. The record for successive days of the
series must be entered in successive columns of the form, and these
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columns are to be numbered consecutively, beginning with one (1)
for the first day of the serics.

304. The series analyzed should be one of the lengths indicated in
paragraph 152. Series of observations very nearly equal to one of
these standard lengths may be completed by the use of extrapolated
hourly heights. I the observations cover a period of several years,
the analysis for cach year may be made separately, a comparison of
the results affording an exeellent check on the work.

305. The hourly heights on cach page of form 362 are first summed
horizontally and vertically. The total of the vertical sums must
equal the total of the horizontal sums, and this page sum is entered in
the lower right-hand corner of the page.

]
i oyt S Somercs  TIDES: HOURLY HEIGHTS
:; Stx\'Lionz Hoxro, California,. . Year: 121%?»
it Chief of Party: Bo B. Latham, Lat, ?5 22% He Long 320° 51° W,
i! Tirae Meridian: .. 320 We . Tide Gauge No. 107 Seale 1:9._. Reduced to Stafl. T
[ Mouh| mo.  d | “ o« i, a. Py P
5% rab._2g 14 15 16 v | e 29| oo
LERE 2 5 4 5 6 LT
i //o’ur.“[”ii?;:. et Folr Feel, Feet Forl, Feal, Fer
f] ol 39 4.2 4.6 4.5 4.4 4.7 4.6 30.9 ‘
1) sa 5.6 4.z 4.2 4.2 4.9 4.8 295
TTE 3% 3.6 3.7 3.8 4.6 23 266
I 3 ‘i 2. 8 3.0 3.0 3.1 3.8 4.1 4.5 23.08
o 5% 3% PX 27 55 58 0.9
s 36 3.1 2.5 2.2 2.2 3.0 3.2 19.8
o | 44 5.6 2.8 2.2 19 2.6 27 20,8
RS 4.5 5.5 2.6 2.0 2.5 2.3 22.5
S 53 3 55 24| 27 Z.2 26.9
i i 60 6.0 9 4.1 3.3 3.1 2.4 29,6
T 6 2 5.4 4.6 3.9 3.6 2.8 321
1y 48 5.8 55 4.9 4.3 4.3 3.2 32.6
Voan 1759 57 51 B s iE 576 A
B 34 4 3 44 4.3 4.2 4.5 3.8 28,9
TR 53 56 3.8 5.7 2.3 5.6 2.9
L 11y 26 28 2.9 3.1 5.8 3.6 2.7
N 270 5E 5F 56 5E 3.2 6.6
{ " I 10 16 17 16 2.2 2.7 2.8 19,6
I :LK’ 18 i 1% K 74 2.5 12,5
PREEE: 22 18 1.4 1.9 2.3 2.3 4.8
" iz 31 2.6 2.0 2.3 25 24 8.1
i a4 59 3.4 2.8 3.0 3.0 2.9 23.0
A s "5 [ 3.6 5.8 3.6 3.7 27.6 |
”j w48 4 45 41 4.4 4.3 4.8 30.6
Csem 1 84 9 90, 8 82,4 76, 5; 75 6| B4 4 60 5 5766
i Sumfor 20 daya, 14029 of = Divisor==696; mean for 20 dayes i

FIGURE 9.
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306. Stencils (figs. 10 and 11).—The first figure is a copy of the
M steneil for the even hours of the first 7 days of the series, and the
second figure illustrates the application of the same. This stencil
being laid over the page of hourly heights shown in figure 9, the
heights applying to each of the cven constituent hours for this page
show through the openings in the stencil, where they appear con-
noeted by diagonal lines, thus indicating each group to be summed.

307, For cach constituent summation, cxcepting for S, there ave
provided two steneils for each page of tabulated hourly heights, one for
the even constituent hours and the other for the odd constituent hours.

Fogox 862
D e snnntc - TIDES: HOURLY HEIGHTS

Station: _.Stenall Lor. aomponend. Ka Year:
Chief of Party: ... Lat. Long.
Timo Meridian: ...
me. d. d,
Hori-
zontal

Sum,

Feet,

Suia, A L . (I | i i . i

L Sumfor2 s Lo M of

Frauns 10,
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The stencils are numbered with the days of series to which they
apply, and special care must be taken to sce that the days of series
on ecach stencil correspond with the days of series on the page of
tabulations with which it is used. Tor constituent S no stencils are
necessary, as the constituent hours correspond to the solar hours of
the tabulations and the horizontal sums from form 362 may be taken
directly as the constituent hour surs.

308. Form 142, Stencil sums (figs. 12 and 13).—The sums for each
constituent hour are entered in form 142, one line of the form being
used for each page of the original tabulations. The total of the hour

¥orm 563
s e TIDES: HOURLY HEIGHTS
Station: .. Stensil for ocmponsnd M. Yeas:
Chief of Party: : Lat. Long.
Time Meridian: Tide Gauge No. Scalo 1: ... Reduced to Staff, T
Mondlh mo. d. d. d. d. d. d. d.
an Hori-
Day. ?2{2\
um,
iy 1 2 3 4 B 6 7
Hour. || Fect. Feet. Feet, Feet, Leet. Feet, Feet, Fest,
ol 398 5| 4.6 48 : (ar ool .
! e
v 3.8 . . 42 . {ag!
U 300 5 . 3. . . 46 2|
3 ; , 3.0 . 31 3.3 (45
4l 3.00 4 . 2.6 . . 854 o
o SN
s 3.1 2222 TG
el 44 28 ) 260 b
faromsmy e
7 4.5 2.6 2.0 2.3
54 5908 | 3.8 : Va2 al) .|
9 6.0 4.1 e
i
04 B, 6!\%] : 5.4 . Y 36l .
W e " p
n . 5.6 . 429! . . )
Noon, 3. T3 B 5.1 . 4 . b‘}af’ .
1 . 4.3 . 4.3 . (as5)8 58 )
14 R.6 . 3. . 3.7 . .
) 153 N -
s 19 2.6 . CaoD. | . (3885
16 2.2} 26
e o816 , 1.6 o7 y2(7s
18 156 1.9 .
18 ooy
wi 23 2.2 1.4 \‘q 23 )4
P 2.6 23 “{z4
2 400pq] . . 2.8 . {30|)ts
: )
2 4.5 4.3 . 38 . 37 )
P
23 ) . ) X- 0 I az2ihie
Sum, I . ‘ . . I . ! - |
Sura for 29 days, 1039 of L Divisar=696; mean for 29 daysss

Fraurs 1L
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sums in each line of the form must equal the corresponding page sum
of the hourly heights in form 8362, this serving as a check on the sum-
mation. After the summing of all the pages of the series has been
completed for any constituent the totals for each constituent hour
are obtained, the divisors from. table 32 entered, and the constituent
hourly means computed (fig. 13). These means should be carefully
checked before proceeding with the analysis. Large errors can usually
be detected by plotting the means.

309. Form 244, Computation of (Vi-+u) (fg. 14).—This form pro-
vides for the computation of the equilibrium arguments for the
beginning of the series of observations, the computation being in
accordance with formulas given in table 2. For the most part the
form is self-explanatory. The values of the mean longitude of the

Form tet

RER s TIOBS: STENCIL SUMS.

Station: 1i0xx0,.. Gl £oxnd B Tt .

Component: ... Length of series: 313573 Series begins: l%}?:}fabg o Long. 1 120°.6L% ¥o

Kind of“f:-i‘\x‘x:o LT FR—- 1202 Movirenrmerne Coraputed by ,mm.m.xwx;malél..,,..nmas@..mz@«

Page, o 1 R a 4 B ° T Bm = Q 10 13 T

T 4.3 2006 17.9 1609 21,0 23,0 28,0 31,9 35,2 3B 31,9 274
2 21,8 175 14ed 18.6 11o2 123 14,6 R0.5 2L.7 239 24T 24,3
3 19,7 16,9 1.0 9.6 12,8 A7.T 2001 2409 274 27.6 29,8 21,1
& 264 18,0 17,3 17.3 22,7  22.6 26,0 84,3 36,5 4.2 33,3 28.5
B 21e6 2Ll 179 18,2 16.3 19,9 2409 29.9 BV.T 34,8 332 29,6
6 20,3 16.8 15,8 12,1 12.0  1Bed 21.0 214 23,6 24.8 RB.0 20,1
T 2%.1 L6eL 13,3 1301 1B.6 237 28,6 33,9 0.1 349 R7.6 236
B 25,5 23,0 21.4 21.6 20.8 235 27,2 29,7 43.5 36,4  B2.6 27l
9 20,9 18.5 16,2 12,1 11.3 13,8 18,1 26,3 26,8 28,6 20,0 29.6
10 1649 18.2 10,2 8.7 1l.B 35,5 18,3 21.B 24.% 28.3 28,7 24.3
A 18,6 15,0 12,5 1567 172 23.2° 29,5 4ol 36,7 Bhed 27,8 240
12 24,8 25,5 20.4 20,7 21,0  24.6 32,1 317 32,7 5605 31,6 28.6
I3 26.% 123 18,2 10,0 11,9 2.5 16.2 2008 2403 80,2 30,3 24.4
1 1647 1Z.6 8.3 8.7 9.6 143 19,0 23,4 30.2 27o4 2.8 2602
16 19,0 16,1 16.3 15.¥ 20,1 26,5 37,7 37.7 4D.2 89.3 356 29.6
16 29.6 22,8 21.6 22.6 2B.7  3l.T Bl.9 34,9 35,8 38,1 2063 27.3
L7 229 18,6 3405 1lel 10,3 12.83 18,8 19.0 2504 28.5 2409 2346
18 16,4 20,0 602 3.2 4,9 10.2 16,0 2802 24,5 25,1  25.4 2706
19 16,7 15.4 13,1 15,3 19,8 29.4 31.0 35.8 30,3 7.9 30,7 20.3
20 276 21,0 1908 20,4 2801 29,9 31l.5 36,1 364 9,9 8.9 22,8
owos 437 01 356,38 300.3 28665 325.8 601.7 495.8 H7BeH 63504 B4H.6 593.5 52304

Poge, IR 18 14 18 10 17 18 19 RO 21 22 28
I E2.7 2led A7.B 135 34,56 17,5 L7.9 26.2 28,2 R27.7 26,9 28,0 B76.6
2 25,8 17,6 17,4 18,9 215 2008 32,1 35,1 3605 38,9 358 2606 B52.H
3 17,8 17.5 Q4.7 15.4 211 23.5 29.2 33,8 35,3 39,5 30,0 24,8 547.8
4 2B.2 20,8 1R.9 9,0 7.1 709 14,0 20,8 22.2 24,9 26,8 26,8 B5308.0
5 27.5 20.2 16,9 15,5 16,4 23,8 25,3 50,3 27.9 29,0 52,0 25,4 8975
6 23,8 28,0 20,0 24,2 28,1 25,2 27.5 28,8 394 38.2 20,7 20,4 562.8
7 395 15,6 17e8 14o6 15:5 2062 29,8 3hed 33,7 BB.L 30,6 20,0 B74.3
8 22.4 19,4 12:3 8.8  Ved 107 14,9 29,5 24,1 26,6  3R.0 27,3 558,51
9 224 18,1 15a4 1450 AVed 19,1 2003 2908 38,0 29,0 26,0 24.6 528,2
10 232 2206 2603 22,0 2404 2609 2807 33,80 20,1 30,7  26s4 2.5 53663
AL 1904 18,2 11,8 12,6 13,1 16.8 25.3 26,6 29,3 29,0  30.4 22,9 6550,8
12 21e8 13,3 8.4 4.6 4.4 8a7 15,0 21,0 25.6 31,9 20,1 27,0 536.3

13 2167 18,8 16.8 17.6 17,6 216 28,9 36,1 35.5 3604 50,2 27.0 542.8
I 28,6 28,6 274 2604 26,0 28.8 3608 32,5 51,5 20,2 200 260 66663
15 2008 1644 12,9 10,6 1406  21eB 220 25,7 27,0 31,1 26.4 22,6 b584o6
16 20,9 14,9 10,9 6.1 4.8 9.9 16,9 2802 Blol 30,8 30,6 2009 580.2
17 21.3 22,2 L7.h 1648 17.9 26,7 27.6 36,0 33.5 3645  35.d 521 545.7
18 22,2 21.0 218 23,6 31,2  81.8 30.4 31,7 31.3 28,2 276 21,1 B5i4ed
19 29.6 15,8 18,5 11.5 10,0 12,2 19.9 26,1 28.6 24,1 22,56 19.7 B42.5
EO 2004 15,2 708 3.6 3,0 a2 17¢1 R2:2 27oh 29,8 e 27,7 550e1
FIN83,6 $75,0 518,0 288,9 5107 30608 461.6 56906 613.7 0620e6 5907 54309 11098,0

Fravne 12,
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moon (s), of the lunar perigee (p), of the sun (h), of the solar perigee
(py), and of the moon’s ascending node (IV), may be obtained from
table 4 for the beginning of any year between 1800 and 2000. "The
values for any year beyond these limits may be readily obmmod by
taking into account the rate of chdno e in these elements as given in
table 1. The corrections necessary in order to refer the o.l.mnonts 60
any desired month, day, and hour are given in table 5. As the tables
refer to Greenwich mean civil time, the argument used in entering
them should refer also to this kind of time, and in the lines for the
beginning and middle of the series at the head of the form space 18
therefore provided for entering the equivalent Greenwich hour,  Any
change in the day may be avoided by using a negative Greenwich
hour when necessary,  For example, 1922, January 1, 0 hour, in the
standard time of the meridian 15° east of Greenwich, may be written
as 1922, January 1,1 hour in Greenwich time, nstead of 1921,
{>00(u1ﬁ>vr 3J,h“>110\1r,<1a\X(n1hl(>th(wx\1so be necessary.  If a negative
argument is used in table 5, the corresponding tabular value must be
taken with its sign veversed.  Ior the mx(Mh\ of the series the nearest
integral howr is sufficient.

310. The values of 1, », & v/, and are obtained for the middle
of the series from table 6, using & as the argument. I A is between
180° and 360°, cach of the last four quantities will be negative, but 7

20"

Porra 168
DEPARTHE o 3 - - .
oo ot anp suspene s TIDES: STEMCH. SUMS,

Btation: Marzen,.. (alifornia. Tt 380,221 He

Component: ! Series beging: 1919 o Foba~13-0 TLoag.: 11200 510 W,
b
.. Computed by Fm‘l AoXoaall s D98,9.1920,

Detay

Kind of time nsed: .
1yt

Fags, o i 3 8 5 & S i a 1 1o 13

2L 2549 18.1 14,8 14,5 0.6 11,1 17,3 23,8 23,3 2444 24,1 22,6

22 16:8 14,8 7.7 5.7 6.6 3.3 1945 25,2 26,5 AT.6  850.8 24.9

B3 178 1BeT 15,3 20,1 2206 507 3TeB B7.3 0.0 42,8  B3.9 284

R a2 808 BaR  Bad BB 8.0 9,7 10,9 38,3 12,1 11,0 9.4
fang-21-8% 6767 H5ud 45,8 4604 45,3 60,9 79,8 96,2 106,9 106.9 99.8 85,3
" AeBO AU7.L 356.3 00,3 28645 $23.8 40,7 A95.8 57848 685,48 645,68 §93.5 652344
Qg o= 504.8 4117 344,10 332.9 86901 462.6 B7Be6 673.7 742.8 VBB 695.3 608.7
Divisors.~ 164  A63 162 165 164 363 163 165 166 165 163 162
Hoansa= 3,08 283 2.42 2402 2625 2,84 353 4013 4,53 4,56 4,25 B.76

Fage, 18 18 14 14 18 7 18 18 820 a1 22 28

21 28,3 1042 17.0 17,3 28,8 24,0 09,7 32,9 35.9 42,1 4.7  Bl.1  550.0
22 22,8 20,7 20,2 2640 8649 31,7 3602 30,0 40,0 Bl.F 26,2 20,5 5514
23 28,1 16.3 15.5 1146 1349 13,7 19,6 25.1 26,6 2602 24.0 24,5 B75.8
LPALLBaB AT 3.0 T 009 049 A7 BA 5.5 10 M7 7.8 189.8
Sung 21-24 7202 59,9 55.7 56,6 6340 70.3 8642 95.4 108,0 10606 92.6 03,9 18438
#1220 4436 B75.0 518.0 200.9 J10.7  360.0 18106 5696 610.7 62046 69047 513,9 11093,0
Sutmg 4 515,8 43409 373.7 34505 373.7 459,10 567.8 665e0 721.7 T27.2 683.3 59748 1293648
Divisorg.. 162 163 163 163 162 162 163 163 168 162 163 163
Voans .o 3010 2.67 2029 2032 2.53 2,83 .46 4,08 4,45 4,49 4,18 B.67

Fravne 13,
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is always positive.

U. 5. COAsT

of observations.

311. The values of w of L, and u of My, may be obtained from table
13 for any date between 1900 and 2000, inclusive, using the value of V
It the series falls beyond the limits of this table,

for interpolation.

AND GEODETIC

the following formulas may be used:
% of Lp=2&—2v— & (par. 129)
% of My=t—p-+Q (par. 123)

P for the middle of the serie

Foxrm 244,
IEPARTMENT OF COMMERCE,

U % GTAIF AND GADIITIC GUAYSY.

torro, California

3.

35° 22!

FIDES: Computation of V, .

No

SUBRVEY

Although table 6 is computed for the epoch,
January 1, 1900, it is applicable without material error for any series

(446)

(447)

The values of ¢ and » may be taken from form 244, the values of B

and @ from tables 8 and 10, respectively, using the arguments I and

1207 51* W,

Station Lat. Long. .380.85 Wa. =ty
v R & ar. (g drecnuich m.) 8
of sevies 1919 Febo 13 8.1 Leagth of series ... 163 Time mer. 120000 Yomes
¥t o, d. Ary ( tGreenwich k
Middle of seies . 1909 Unw 5 12, 20

Comtputo all valuna to two ducimal placzs.

Table: in Hareonic Analysis and Prediction of the Tide.

Tor the businniag of eerice.

For the niddle of veries.

(10)=v" (Table 6)

Vdnm2 N,

| =g (5)==p (A2
< Tanuacy 1ot year N 28155 27.:41 25171,
cerrectien by Ist of ronth 6. 0-.00 1537 =B 35
1 to day of rmonth o 000 Q48 021,
Todled, vorrcctien to arsmwich hr 3] i 000! =004
(2 300,02 1y 82,24 I, 522 52 1, 281 85|, 4182 i, 245 11

e 5 | (ME),

tA;N’t:\:C: ha| o T 46,84
e (Table AN -
(9)wk (Tatle 0} by 60,00
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312. In finding the difference between the longitude of the time
meridian (8) and the longitude of the place (L) consider west longitude
as positive and east longitude as negative. In the ordinary use of
form 244 it is assumed that civil time has been used in the tabulations
of the observations. If, however, the original hourly heights as
tabulated in form 362 are in accordance with astronomical time in
which the 0 hour represents the noon of the corresponding civil day
and the 12th hour the following midnight, form 244 will still be
applicable if the longitude of the time meridian (S) is taken equal to
the eivil time meridian plus 180°. For example, if tabulations have
been made in astronomical time for a locality where the civil time is
based upon the meridian 15° K., the value for 8 should be taken
as — 15 4 180, or 165° If tabulations have been in Greenwich
astronomical time, S should be taken as 180°.

318. Form 244a, Log F and argumenis for elimination (fig. 15).—
Items (1) to (11) are compiled here for convenience of reference for

Fovmn
DEI”AR’FMENT OF coMMmcE
9. COAST RHD GEODETIC SUAVEY

TIDES: Log F and Arguments for Elimination

Station Horra,..Californip.
¥ m. . b
Length of series ... Series begins 1949, Feba 18 9
Component Log ¥ Component Log F Component Log F
(4 dec) {4 dec) (4§ dec)
[/ 0.020L Mg, o ... . |..9.9726
T 0:01860..... Ny, 2N .9.9982
T 0:0472. . [ A 0. 0264,
Ta=Log P(Ma)-+(7) | .. 9:9889 00 .. ... L:0:0029 ...
M= Log F(O)+(®) |...9.:8886., | 0.0000 MO ... 0.0596 ...
My o oo . ]..9:9982 Q2q . ... .}1.0:0264 MS{ ... . 9.9982.......
My ..o 9.9897 . Ry 8,8, 8, 8Tl 0.0000 Mmoo, . L 99772 ...
Me oo ].9.9863 Mo .. 4 1..9:9988 3,88 . . . .| 0,0000
Mo 9:9794 . s 1000264

(2 dec.)
(2 dec.)
(2 dec.)

(2) = =1tom (7) from Form 214 =
(3) = Pwitem (12) from Form 244 =

(4) = (h~ ') =item (3) —% item (10), from Form 244 ==
(5) = (h=y'")y =item (3)~4 item (11), from Form 244
(6) = (h—p,) =item (3) —item (4), from Form 244 = .

.. (0 dec.)
. (0 dec.)
.. {0 dec.)

(7) =Log R, from Table 7= _....9:9687 ... (4 dec))
(8) =Liog Qa from Table 9+......9.8592...... (4 dec.)

(9) = Natural number from Log F(K) = ... 1.038.......... (3 dec.)
(10) =Log f(K,) = 10— Log F(X,) = 9.,9528.... . (4 dec.)
(11) = Natural number #(X,) from (10) =.. Q.89 . {3 dee)

Exeranarion~For sl tables seo Special Publication No. 98, First fill in items (1) to (8). Then
obtain values of log F for all components excepting Ly, and M, from Table 12. Log F(L,) =log F(M,) +
log R,, and log F(M,) =log F(O,) +log Qa. Items (9) to (11) are obtained after the rest of the form
has been filled out.

Fraure 15,
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this and form 452.  Ttems (1) to (6) are obtained from values given in
form 244. Ttem (7) is obtained from table 7, using items (2) and (3) as
arguments, and item (8) is obtained from table 9, using item (3) as
arguroent. Items (9) to (11) are obtained after the rest of the form
has been filled out.

314. The log I for each of the listed constituents, except Ly and M,
and those for which the logarithm is given as zero, may be obtained
from table 12, using item (2) as the argument. For constituents
L, and M,

(448)

Log F'(M,)=log I'(O,) -litem (8) (449

1f the tidal series analyzed was observed between the years 1000
and 2000, the log F(Iy) and log f'(M;) may be taken directly from

Form 194 . ol § re
LA O COMMERGE TIDES: HARMONIL ANALYSIS
COAST AND GEODETIC SURVEY JN— .
Station Horro, California Tong. ... L

Component ... M. Serics begina 2919 Fabs L ime Mer, 2

P

i ]
LASHAL AR

a5 el Tad aer
0,06 0.08{ 0.07] 006 0 09
0.081 0.
A56] 5. 8.06] 0.061 7 a4 7. 4%

"9 05) B, a8| 7.

P
[ 8 o) (Y] U (6 2
Sin. @ @yt

N1 1 n

i
163

|

6,000

000
505

=
w | 0.05 0.0000-100] «
2 90 721! 120 7

@28y 25) (28) @n (28) [ a4y (333 (36) (an)

610 | 6156

26y - (27

(4 5) - (39

(41)0¢7, for b

242y Toual Vot te (From Foru 211)

‘ Cas, Bin.
907 Tsthalt, | 2 bl R
o] o.000f a1 13.19
| 80101 o
o 0.000 el
1], 489G [
o 0,000 L
o] =076 ol 0.
Yary Q140G 12, ~O00B0]  prisin 1t quadzont when v 3 £755 0 30 guadant when we have s ond ¢,
""""""""""" 35 i 2d quardrant veden s el e, ¢ isin th quadeant wheo we have -5 and e,
o componnt I M M o,
0 2 e eeeeeere oo oo ! 978247 1914613 1893008
(B39 log. 12¢ . 146158 18, 77815 18.000G0
63634 0.83

1 | 187..36
70,671 253.72| 108,61
G6671 | 9. 96558 |9.99548

0086 1 226

9:18275..
N B REURE B
o 2
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table 13, using the year of observations, together with item (1), as
argument.

315. Form 194, Harmonic analysts (fig. 16). wThls form is based,
primarily, upon formulas (295), (296), (3()5), and (304) and is demgn(‘d
for the computations of the first approximate values of the epochs
() and the amplitudes (H) of the harmonic constants. Provisions
are made for obtaining the diurnal, semidiurnal, terdiurnal, quarter-
diurnal, sixth-diurnal and eighth- diurnal con%ltuonfs but only such
items need be computed as are necessary for the partlcular constituents
sought. For the principal lunar series My, M,, My, My, M, and M,,
compute all items of the form. For the principal solar series 8,, S,, 3,
and S, items (14), (16), (33), (35), and (37) may be omitted. For
the lunisolar constituents KI and I, items (14), (16), and (23) to
(37) may be omitted. For the diurnal constituents J,, O;, 00, Py, Qy,
2Q, and py, items (5), (6), and (14) to (37) may be omitted. Tor tho
semidiurnal constituents Ly, Ny, 2N, Ry, Ty, Ny, 42, vp, and 28M, items
(3), (4), (8) to (16), and (23) to (37) may be omitted. For ter-
diurnal constituents MK and 2MK, items (5), (6), (9), (12), and
(18) to (37) may be omitted. Hor quarm ~-diurnal constituents MN
and M5, items (3), (4), (8) to (26), and (35) to (37) may be omitted.
In the bottom portion of the form the symbol of the constituent is
to be entered at the head of the column or columns indicated by the
ubs(,upi, corresponding to the number of constituent periods in a
constituent day, the remaining columns being left blank.

316. The hourly means from form 142 (fig. 13) are entered as items
(1) and (2) in regular order, beginning with the mean for 0 hour.
Item. (4) consists of the last five values of item (3) arvanged in reverse
order. Item (8) consists of the last six values of item (5) in their
original order. For the computations of this form the following
tables will 'bc found oonvonivnt table 19 of this publication for
natural products, Vega’s Logarithmic Tables for logarithms of linear
quantities, and Bremiker’s I‘unfstdhgo Logarithmen for logarithms
of the trigonometrical functions. In the last table the angular argu-
ments u e given in degrees and decimals.

317. In choosing between ibems (44) and (45) the former should
be used if the tabular value of (41) in the first quadrant is greater
than 45° and the latter if this angle is less than 45°, In referring
(41) to the proper quadrant it must be kept in mind that the signs
of the natural numbers corvesponding to (38) and (39) are respectively
the signs of the sine and cosine of the required angles. Therefore
(41) will be in the first quadrant if both s and ¢ are posnwo in the
second quadrant if s is positive and ¢ negative, in the third quadrant
if both s and ¢ are negative, and in the Tourth quadrant if s is nega-
tive and ¢ positive. In obtalnmg (49) use (46)4-(47) for all
constituents except S, and (46)--(48) for 5. The log factor ¥ for
item (50) may be obtamod from. form 244a.

318. Iorm 194 is designed for use when 24 constituent hourly
means have been obtained and all the original hourly heights have
been used in the summation. If in the summation for a constituent
each constituent hour of the observation period received one and
only one of the hourly heights, it will be necessary to take the log-
fmomentmg factor from table 20 and add this to the sum of items
(46) and (48) to obtain ttem (49), striking out item (47).
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319, This form is also adapted for use with the long-period con-
stituents. Assuming that the daily means have been cleared of the
effects of the short-period constituents (p. 89), and that these means
have been assorted into 24 groups to cover the constituent period,
the 24 group means may then be entered in form 194 in place of the
24 hourly means used for the short-period econstituents. Then, treat-
ing the constituents Mm and Sa the same as the diurnal tides and
the constituents Mf, Msf, and Ssa as the semidiurnal tides, the form
may be followed except that the log-augmenting factor must be taken
from. table 20 and then combined with items (46) and (48) to obtain
item (49), striking out item (47).

320. To obtain Sa and Ssa from the monthly means of sea level, or
tide level, the following process may be used: Xnter the monthly
means b(mmnmo with that for January in alternate spaces provided for
the houzly means in form 194, placing the value for January in_the
space for the 0 hour. For convenience consider all the intermediate
blank spaces as being filled with zero values and make the computa-
tions indicated by (3) to (12) and (18) to (21). Correct the co-
efficients of s, and ¢, from 12 to 6, at top and foot of columns (9), (12),
(19), and (21). In bottom of form enter Sa in column havmg sub-
seript 2 and Ssa in column with subsecript 4 in order to obtain correct
augmenting factors and strike out numerals indicating subscripts.
For (38) and (39) take the logarithm of twice the values of 6s and 6¢
as obtained above. The {’s as obtained from (40) must have the
following corrections applied in order to refer them to 0 hour of the
first day of January—common years, Sa correction=s=--14.07°, Ssa
correction==-28.14°; leap years, Sa correction=-+14.94°, Ssa cor-
rection==-429.88°, For convenience in recording the results it is
suggested that the ¢ as directly obtained from (40) be entered (in
its proper quadrant) in the space just below the logarithm from which
it is obtained, and that the ¢ corrected to the first day of January
be entered in the same line in the vacant column just to the right.
The V4w, computed to the first day of Januzuv may then be entered
11111110(114L(~h ander the corrected ¢’s and the «’ of (43) re adily obtained.
Tor (49) the combination (46)-- (47) will be used.

321, Form 452, R, «, and ¢ from analysis and irference (figs. 17 and
18)—"This form provides for certain computations preliminary to the
regular olimination process. The constants for coustituents K, and
S, as obtained dir (\cilv from form 194 may be improved by the appli-

cation of corrections from tables 21 to 26; and constants for some of
the smaller constituents, which have been poorly determined or not
determined AL all by the analysis, may be obtained by inference. If
the series of observations is very short, the inferred values for the
constants of some of the constiluents may be better than the un-
climinated values from form 194.

322. Form 452 is based upon paragraphs 229 to 243. Tt is designed
to take account of the diurnal constituent on one side (fig. 17) and the
semidiurnal constituents on the other side (fig. 18). The amplitudes
and epochs indicated by the accent (/) are io be taken from form 194
and the quantities indicated by the asterisk (*) from form 244 or 244a.
If the series is less than 355 days, values for S, and 28M may be
omitted.

323. For all short series the values in columns (4) and (8) are to be
computed in accordance with the equivalents and factors in columns
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(3) and (7) respectively. I the series is 192 days or more in length,
the « of M,, Py, and K, for column (4), and the log B of M,, P, and
K, for column (8) may be taken directly from form 194, and if the
series is 355 days or more in length the « and log B of all the com-
ponents for which analyses have been made may be taken directly
from the same form. When a value is thus taken directly from the
analysis, the corresponding equivalent in column (3) and factors in
column (7) are to be crossed out.

324. The tabular values of items (12) and (13) for the diurnal con-
gtituents and items (14) to (18) for the semidiurnal constituents may
be obtained from. tables 21 to 26 or from plotted curves representing
these tables, but for a series of 355 days or more in length the acceler-
ations may be taken as zero and the resultant amplitude factors as
unity.

Form 452

DEPARTMENT OF COMMEACE
11 5 COAT AND GEODENE SURVEY

TIDES: R, s, AND ¢, FROM ANALYSIS AND INFERENCE,

Station .. Morro, Celifornis .
Length of Sories ..o.o.onn 168 days.  Serics beging 1919, February 13
DIURNAL COMPONENTS.
g Frow Anavvsui, »2 TRrox ANarysis AnD INFERENCE. *?; FROM ANALYSLS AND INFERENCE,
g g
§ R [ § X Vobte | §==(4)~(5) § R
g‘ (1) @ 8 (3) My &) | ] [0} (8)
1.8 1Fe@dey) @) | S Bquivalent, | °(Ldee) | °(Udec) | °(0dec) || © Factorn, (1deey
5 b 3 | Krposeq)... 116.7 326 3, lleg.0.079 | -8.8076
K, |.0.967 K, | (kY X8.8+02)..210: 9 51 i% %(;'3 + g. ggéi-
N . oz F 0.
0,080 M | Krmesxquy.... 205 1 4 1139 s R
o |y - &)
4§00 1 X K, |log. RAK,) | -+ 9. 96852
PR} fag. (13) Q. 0128 |
Q| Kj—1.5%(14) ‘OE-I{f(Ilfx) 9. 9724
2Q | Ki-2.0X(19) = o(o\"; o
s K ; s sy o = My | log. 0.07 +8.8513;
' N log. RO | +9.7560
[T SN U S B P | KU 143X () 943, 338 o
ROLY

0302 dec.); (10)= F(K, )=
clertion in K, due to P,=F(K,)X
aultant amplitude, K, aad Py HF(K,) X (Tablo 22
O Ao (Ldee)

RO
R (0y) i 9.7550

5. HA(0y)

Explanation.—Obtain frora Form 194 the amplitudes and epochs indicated by the accent (), lag, I{QO)*
and from Form 244 or 244 the quantities indicated by the asterisk (*). log. R(OOY
T the eries is lesy than 355 days, emit S, For all ghort series, the values in colurns (1) o R(00)

and (8) will bo computed in accordance with the Equivatents and Factons in columms (3) and (7), §=F o
reapectively; butif the setica ia 192 days or more in length, the x of M; and Py for column (1), v | fog. 0334
and the log. R of M, and P, for column (8) may be taken directly feom Forn 194; nd i tho ceries tog. R(K,)
i 355 daya or mote in length, the < and log. R ofalt the componeuts for which analysis has been made tog. F{K)*
way be taken directly from thesame form, - When a value is thus taken dircetly from the analyels, tog. R(Py)
the corrosponding cquivalent in colwma (3) and factors in column (7) should bo crossed out. R(P)
The tabutsr values for (12) aud (14) may be obtuined trova Tables 21 and 22 in Special Publi- 70, [Tog. 0,004
cation No. 98 or fram plotted curves representing this table, For o ecrics of 355 days or more, tog. } 0,)
(12):=0, and {13)=1. o R
Obtain the xof X, by applying (12) to (K,°) from Fortn 134, and use this corrected « in com- b’R(Q !
puting (14), If the two angle in (14) differ by tore than 180°, sdd 360° to the smaller befors )
taking the difference, which may be either positive or negative. g. 0.
Tn computing coluran (8) it wilt ba noted that the corrected log. R{K,) s to be used whea log. R(O,)
inferting P tog. 22Q)
R2Q)
log. R%(S,) e
R(S) = RAS)
log. 0.038 |- 8.5798
log. (0 | +9: 7850
log. Ber) 8-3348
Ries)

ReMARKS!

Freure 17.
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395, The «’s of K, and S, are to be corrected by the accelerations as
indicated before entering in column (4), and in computing item (14)
for the diurnal constituents and (21) for the semidiurnal constituents
the corrected «'s are to be used. If the two angles in item (14) for
the diurnal constituents, or in items (20) or (21) for the semidiurnal
constituents, differ by more than 180°, the smaller angle should be
increased by 360° before taking the difference, which may be either
positive or negative. In computing column (8) it will be noted that
the corrected log B's of K, and 8, are to be used in inferring other
constituents depending upon them.

826. Form 245, Elimination of component effects (fig. 19).~This
form is based upon formulas (389) and (390). One side of the form
is designed for the elimination of the effects of the diurnal constitu-
ents upon each other and the other side for use with the semidiurnal
constituents, the two sides being similar except for the listing of the

Yoxim 483

DEPARTMENT OF COMMERCE
1. 5. GOAST AN GEOPERIC SURNEY.

TIDES: B, « AND ¢, FROM ANALYSIS AND INFERENGE.

Stalion Tyiorfg_y_m(,‘&].ifornit\
Length of Series ... 8B dayn. Sorien boging ........ 1949, Fobruexy 13
SEMIDIURNAL COMPONENTS.
A;’; Frov AnaLvsts AnD INPERENCH. ~:" FROM AMALYSIS AND XNPERENCE.
4 . ] Vo | g4 —(6) g' [
i @) @ () N . ®
S Tquivalent. | °(hdec) | °(1dec) | °(@dec) || S Factots, (4 dec.)
X, |8 304.2 299.6 | ... 5. K, | tog. 0.272 +9.4348
Ly | M3-H(20) 329.9 | 302.3 28 | log. (83, + 9. 6017
Fce . log. B (K" | - Q. 0472
LLRes L. b3 AR (o TA— L3084 fog. R(K,) 8- 8801
N, |.9.268 326 84 w, {auy. 286.9 (K o
aN | Np-(20) 2665.4 L, |log. 0143 | - 9.1563

log. R(N;) | -+ 9. 4201
fog. B, - 9. 96HT |
Tog. R(L,Y B 8097

R, 18 304-2
5 | @y 3048110 | 8042
T, | 8. 30402
N | HH046IXED. . 3065 ] .

,,.i(.’,, 7103.’}(’&?\[,) 0.09538
R(My)== R
N, | log. RN} 9.4201
I(N)== /(M)
| 10g. 0.133 +9.1239
log. R(N)) | -+:9. 4201 |

vy | M;—0.866(20) 289.8
29M | (25M°Y et

+ 0)=Pree... BB 0. (2 dee); (1) f(K)¥... Qo BRT..(3 dec) “Tog- R(ZNY 8- 5440
(0 dec.) R(2N)
(1)mac A bl 23X (K=o R, |log.0.008 | -7.9031
(16)==cceleration in 8, due to Ty="Tsblo 25 ..... 2 log. R(S) _} +9. 5017 ]

Tog. R(R,) 74040

(16)=(14) - (45)..

N - R(R)
(17)=reaultant amplitude, 8; and Ky=1-H[Table 24X f(K,)] | o v—s: o Wy 54978
9 ~ (19) —9.9958 |
{19y L {17)-Hlog. (18, W =2 L8 4 dec.) Tog. RSy 95017
(20)=(M;—N3) a8, (1 dec.); (2)(Si— M= 2a® (1 dec) | B8
o Toation. o O'btain from Foru 194 tho amplitudes and epochs indicated by tho accent (%5 | log. 0059 | - 8. 7109
2 planation ~—Obtain from Form 194 the amplitudes an:d epochs indica y the sccent ('); o 49,
and brain Thoctn 514 or 21 tho quaatities indicated by tho soterisk (). ) i log. R(%) [ +9.5017
Tt tho neriea is e than 355 days, omit 25, For ald shott series, the values in columns (4) log. 2(T) 82726
and (8) will bo computed i ordanca with tho Equivalents and Fectorain columns (3) and (7), R(Ty)
respectively; but i}thoﬂel’im i3 192 dayn or more in lcuglu\, the « of K, for coluran (4) and the |=T==55 0070 6oy $7.8461
log, R of K for colusun (8) may be takon directly from Form 194;and if tho seriesis 365 days oo Xg flog. O B
more ju length, the « and log. R of ol the compencnts for which analysis has heen made may log, R(My) | +0 0983
be taken directly from the samo form. When o value jy thus taken directly from the analysls, Tog. B(x;) 7.9404
the corresponding equivalent in column (3) and factors in column {7} should be croased ont. RON)

Tho tabular values for (14) to (18) may bo obtained from Tables 23 o 26 in Special Publi- fze
caiion No, 98, ot fron plotted curvea representiog these tablen, For s series of 355 days ox more, £,
(1)==(15)=(16)=0; (11)=(18)=1; and 192:-10,

Obtat

7| tog. 0.024 - 8.3802
tog. R(My) | +0-0958

btain tho « of 8, by npplying (16) to (81Y from Form 194, and uso this corrected x in com- N
puting 0. 1 tho A RN iZOS or (21) differ by moze than 1807, add 360° to tho tog: Ia) 8 4758
smaller before taking the difference, which may bo either positive or negative. (i)

Tn computing columa (8) it wifl bo noted that the corvected log. R of §, 14 to bo weed fn in- T 1 9.2878
fexring other components depending upon thin one. va 1‘:5 Ié(N,) +9 .
log. (s} 87079
REARKS: e )
29M | dog. R/(29K)
R = R4

FIGURE 18.



HARMONIC ANALYSIS AXND PREDICTION OF TIDES 117

constituents. The symbol A represents the constituent to be cleared,
and the symbol B is the general designation for the disturbing con-
stituents. The symbol applymo to constituent A is to be crossed oub
in column (1) and entered in column (8). The values for items (9)
and (19) are to be taken from columns (1) and (2) of form 452,

327. For obtaining column (2) it will be found convenient to copy
the logarithms of thv R’s of B from column (8) of form 452 on a hori-
gontal strip of paper spaced the same as table 2() Applying this
strip successively to the upper line of the tabular values for each con-

DEPART. ln»\'l ¢ Cosntenes
COAST AND GEQUETIC STRVEY

TIDES: ELIMINATION OF COMPONENT EFFECTS

Station :

yr.
.. days. Serfes beging ... % R USRI ML X SN 1500

Length of series

(0] (%] A0 * )
B | g TR o RESCLTS
N B T TR R e TR B I PSR I TR T BRI ey Ut ¥ diee. for Wegaritheas, 3 dee, for amphitudes, 1 dec. for e
Component A . Koo
- - ' (A from analysis

1)~ (42) = log tan 8 §

og €05 8§

12) - (£5) == log R(A3)

= log F(A)

:r‘(lh) Hlog Floy) =log H(AD
H(Ay

(A from analysis

Yz (44) - (10} == ¢ ()
s (Vb u)
s (204 (Vb2 == alady)

Camponent A=
0 (A from analysis

og (10)
(1)~ (12)=log tan § ¢
it

uy cos b {

~ (18} = log R(AD
tog FA)

L16) -+ log F) = dog HIGA,
< H{A)

¢ () from analysis
[$3 1) P10y =g (A

Component Ay
= (A from analysis
(97
= log (6)
9 = log (10)
s )= (12) = log tan & ¢
wh g
kg €08 8 §

(16T = (12) — (15) = log B{A
{160} = log F{4)

Q7 (861 log FLA) == Tog FILA LD o
48y = 0D

(197 = £ s} from acalysis
(20) =
200 = {
2

[ osumse 0004 A0

S g gar (1) Bson b s Tehelo eb.

8¢ or (1) i i

28, 19

Computed by

o g, Verified by oL e
ate

Frourwk 19,
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stituent the logarithms of the resulting products for column (2) may
be readily obtained. Similarly, for column (4), the {’s of B from
column (6) of form 452 may be copied on a strip of paper and applied
to the bottom line of the tabular values for each constituent and the
differences obtained. The natural numbers for column (8) correspond-
ing to the logarithms in column (2) can wsually be obtained most
expeditiously from table 27, this table giving the critical logarithm for
each change of 0.001 in the corresponding natural number. If the
logarithm is less than 6.6990, the natural number will be too small to
appear in the third decimal place, and the effects of the corresponding
constituent may be considered as nil.  The produets for columns (6)
and (7) may be conveniently obtained from table 30,  In column (8)
the references to (6) and (7) arve to the sums of these columns. The
values of log I'(4) and (Vi-+u) for column (8) may be obtained {rom
forms 244 and 244a.

328. in the use of this form it will be noted that the B's and s
referring to constituent B are to be the best known values whether
derived from the analysis or by inference, but the R and ¢ of con-
stituent A4, entered as items (9) and (19), respeetively, must be the
unmodified values as obtained direetly by form 104,

ANALYSIS OF TIDAL CURRENTS

329. Tidal currents are the periodic horizontal movements of the
waters of the carth’s surface.  As they ave caused by the same periodic
forces that produce the vertical rise and fall of the tide, it is possible
to represent these eurrents by harimonic expressions similar to those
used for the tides.  Constituents with the same periods as those con-
tained in the tides are involved, but the current velocities take the
place of the tidal heights. There are two general types of tidal cur-
rents, known as the reversing type and the rotary type.

330. In the reversing type the current flows alternately in opposite
directions, the velocity inercasing from zero at the time of turning
to a maximum about 3 hours later and then diminishes to zero again,
when it begins to flow in the opposite direetion. By considering the
veloeitios as positive in one dircction and negative in the opposite
dircetion, such a current may be expressed by a single harmonic
series, such as

"= A cos (at-h o)+ B cos (bt-8)--C cos (ct-v)ete.  (450)

time f.

A B, O cte.=maximunt velocities of current constituents.

331. In the rotary type the direction of the current changes through
all points of the compass, and the veloeity, although varying in
strength, scldom becomes zero.  In the analysis of this type of cur-
rent it is necessary to resolve the observed veloeities in two directions
at vight angles to each other. For convenience the north and cast
dircetions ave sclected for this purpose, veloeities toward the south
and west being considered as negatives of these,  For the harmonic
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represonbation of such currents it is, therefore, necessary to have two
series—one for the north and the other for the east component.

332. For the analysis of either type of current the original hourly
velocities or the resolved hourly velocities are tabulated in the same
form used for the hourly heights of the tide. To avoid the incon-
venlence of negative readings in this tabulation, a constant, such as
3 knots, is added to all velocities. These hourly velocities are then
summed with the same stencils that are used for the tides, and the
hourly mean velocities are analyzed in the same manner as the hourly
heights of the tide. The same forms are used for the currents, with
the necessary modifications in the headings. 'The rotary currents
will be represented by a double set of constants, one for the north
components and the other for the east components.

333. For a 29-day secrics of observations, it is recommended that
the analysis be made for the M series, the 9 series, and for Ny, K,
and O,. For longer series additional constituents may be included.
In the analysis of current velocities, the harmonics of the higher
degrees such as M, and My may be expected to be of relatively greater
magnitude than they are in the tides. Irom theoretical considera-
tions it may also be shown that the magnitude of the diurnal constit-
uents as compared with the semidiurnal constituents in a simple tidal
oscillation is only about one-half as great in the current as in the tide.
However, because of the complesity of the tidal and current move-
ment, the actual relation between the various constituents as deter-
mined by the analysis is subject to wide variations. The constituent
3, which is usually negligible in the tides, may be found to be of ap-
preciable magnitude in offshore currents because of the effect of daily
periodic land and sca breezes. However, as this constituent has a
apeed very nearly the same as that of K, it can be separated from the
latter only by a long series of observations, preferably a year or more.

334. Yorm 723 (fig. 20) provides for the determination of harmonic
constants from a series of current observations by comparison with
corresponding constants from a tidal series covering the same period
of time. This comparison is to be used if the series of observations is
less than 29 days and may be used for longer series if desired. For
the purpose of this comparison the hourly predicted heights at the tide
station are usually to be preferred to actual observations since meteor-
ological irregularities appearing in observed tides do not necessarily
appear in a gimilar manner in the observed currents. In this work
both currents and tides {or the simultancous period are to be summed
for constituents M, 5, N, K| and O; and the analysis is then carried
through form 194 (Tides: Harmonic Analysis) to obtain the values
of B and ¢’ {or cach constituent. The harmonies M,, M, and M,
are to be obtained for the current series, but may be omitted in the
tidal series.

335. Enter in Form 723 the accepted £ and « of the principal tidal
constituents for the reference station and also the values of R/ and ¢/
obtained from the analyses of the simultancous series of tides and
currents,  The necessary calculations in the form are self-explana-
tory. The corrected velocity amplitude of cach current constituent
is obtained by a ratio on the assumption that for cach constituent the
relation of the corrected amplitude to the uncorrected amplitude is
the same for both tide and current. The ratio derived for the con-
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stituent By is used also for the higher harmonics of M, this being
considered more reliable than ratios determined dirvect iy from the
much smaller amplitudes of these harmonics. The corrected epoch
(l{) for each current constituent is caleulated on the assumption that
the difference between the con rected and uncorrected epoch is th same
for tide and current. For convenience the zetas (¢) rather than the
kappas from the simultancous observations are used in the form and
a ,l<,)r_1guu<[<\ correction, column (10), is introduced to allow for this
fact.  Differences in (*olmnn (9) for the higher lmmmmm of M, are
derived from the difference for that constituent because of the uncer-
tainty in the determination of epochs of constituents of very small
amphitudes.

336. Short series of current observations are frequently taken at
half-hourly intervals. ‘xs individual observations are somewhat
rough, the utilization of the hall-hourly observations will add ma-
terially to the accuracy of the rvesults obtained from an analysis.
Morveover, the closer spacing of the half homiv values will give a
better development of the higher harmonics o which are of greater
relative importance in the currents than in the i;i(,l(as. Special stenceils
have been prepared for the summation of these ()h%(\z\*ntionx Obser-
vatlons taken on the exact hour are tabulated in form 362 as usual,
while observations on the half-hour are offset to the right on the
intermediate lines.  As the series of observations under consideration
are short, provisions have been made for obtaining only the diurnal
constituents K, and Oy the semidiurnal consti buents N 9, 19y, and Ny,
and the higher havmonies ol M.

337. For the diurnal cons ti(‘u(\n(' the special stenells provide for
the same (hr;mbuhon with the inclusion of the half- hourly values, as
ig obtained with the st(m(l(n(l steneils used for the hourly values only.
Hourly means for the constituents are obtained and entered in form
194 and all subscquent computations are the same as those based
upon the use of the standard stencils.

338, Ior the semidiurnal (umtituvu 5 My, B, and Ny, the semi-
(hlmml p(‘lmd is divided into 24 parts.  Speeial stencils for the con-

stituents My and Ny provide f,‘m,‘ ‘t,fh(‘, distribution of the obscrved half-
hou,tl._v velocitios into the 24 omug)% indicated by this division. No
steneil is required for the constituent S, the necessary grouping being
accomplished by (:omblmng sums for afternoon obscrvations with
those for the forenoon observations ol corresponding hours.  Thus,
the noon observations will be included with those taken at mi([ni(v‘h’i‘;;
and the observations at 12:30 p. m. with those taken at 0:30 a.

339. The resulting means obtained for the semidiurnal ums(ltuc‘nta
by the method described above arc in reality hall-hourly means, but
in adapting form 194 lor the :malku these means may be entered
m order in the spaces provided for the hourly means.  Then, after
doubling all subscripts in the form, the neeessary (:()num tations may
be carried out as indicated. l.lnlb, all computations for the scmi-
divrnal constituents will be made in the spaces originally designed
for the diurnal constituents. The (mnputatmm for all higher 1 har-
monies of even subseripts may be carried out in the same form using
the spaces originally designed for Hl(\ harmonies with subscripts one-
half as great.  In this a(la,pmimn ol the form no provision is Hld(l(‘ for
the computation of a harmonic of odd subseript which is here of vela-

=
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tively little importance. Other forms which are used in connection
with the analysis will not be affected by the use of the special stencils
for the half-hourly velocities.

840. Observations on the half-hour may also be analyzed sepa-
rately from those on the exact hour, using the standard stencils for
the swmmation. In this case the stencils are moved to the right one
column and dropped one line, thus covering the hourly values and
exposing those occurring on the half-hour. Allowance must be made
for the difference of a half hour in the beginning of the series when
computing the (Vo-+u)'s in form 244. This may be conveniently
done by assuming a time meridian a half-hour or 7%° westerly from
the actual time meridian used so that the first half-hourly observation
will correspond to the 0 hour of the assumed time meridian. The
difference of 15 minutes for the middle of the series has a negligible
effect in the computations and may be disregarded. In other respects
the analysis is carricd on in the same manner as the analysis for the
hourly observations, and the results obtained afford a useful check
on the latter.



PREDICTION OF TIDES

HARMONIC METHOD

341. The methods for the prediction of the tides may be classified
as harmonic and nonharmonie. By the harmonic method the ele-
mentary constituent tides, represented by harmonic constants, are
combined into a composite tide. By the nonharmonic method the
predictions are made by applying to the times of the moon’s transits
and to the mean height of the tide systems of differences to take
account of average conditions and various inequalities due to changes
in the phase of the moon and in the declination and parallax of the
moon and sun. Without the use of a predicting machine the har-
monic method would involve too much labor to be of practical service,
but with such a machine the harmonic method has many advantages
over the nonharmounic systems and is now used exclusively by the
Coast and Geodetic Survey in making predictions for the standard
ports of this country.

342. The height of the tide at any time may be represented har-
monically by the formula

h=H+2 f H cos [at-+ (Vo) —«] (451)
in which
h=height of tide at any time .
Hy,=mean height of water level above datum used for pre-
diction.
H=mean amplitude of any constituent A.
J=Tfactor for reducing mean amplitude H to year of pre-
diction.
a==gpeed of constituent 4.
=time reckoned from some initial epoch such as beginning
of year of predictions.

x==e¢poch of constituent A.

In the above formula all quantities except » and ¢ may be con-
sidered as constants for any particular year and place, and when these
constants are known the value of 5, or the predicted height of the
tide, may be computed for any value of ¢, or time. By comparing
successive values of & the heights of the high and low waters, together
with the times of their occurrence, may be approximately determined.
The harmonic method of predicting tides, therefore, consists essen~
tially of the application of the above formula.

343. The exact value of ¢ for the times of high and low waters will
be roots of the first dervivative of formula (451) equated to zero,
which may be written—

dh , x
T — 2 af H sin [ai-+ (V,4u) —]=0 (452)
123
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Although formula (452) canuot, in general, be solved by rigorous
methods, it may be mechanically solved by a tide-predicting machine
of the type used in the office of the Coast and Geodetic Survey.

344, The constant I7, of formula (451) is the depression of the
adopted datum below the mean level of the water at the place of predic-
tion. Ior places on the open coast the mean water levelisindentical
with mean sea level, but in the upper portions of tidal vivers that have
an appreciable slope the mean water level may be somewhat higher
than the mean sea level.  The datum for the predictions may be more
or less arbitrarily chosen but it is customary to use the low-water plane
that has been adopted as the reference for the soundings on the
hydrographic charts of the locality.  For all places on the Atlantic
and Gulf coasts of the United States, including Puerto Rico and the
Atlantic coast of the Panama Canal Zone, this datum is mean low
waber.  Tor the Pacific coast of the United States, Alaska, Hawaii
and the Philippines, the datum is in gencral mean lower low water.
Tor the rest of the world, the datum is in general mean low water
springs, although there are many localities where somewhat lower
planes ave used. After the datum for any particular place has been
adopted its relation to the mean water level may be readily obtained
from simple nonharmonic recductions of the tides as obscrved in the
locality, The value of H, thus determined is a constant that is
available for future predictions at the stations,

345, The amplitude £ and the epoch « for each constituent tide to be
included in the predictions are the harmonic constants determined by
the analysis discussed in the preceding work.  Iiach place will have
its own seb of harmonic constants, and when onee determined will
boe available for all times, except as they may be slightly modified
by a more aceurate determination from a better serics of observations
or by changes in the physical conditions at the locality such as may
oceur from dredging, by the depositing of sediment, or by other
A USeS,

346. The node factor f (par. 77) is introduced in order to reduce the
mean amplitude to the true amplitude depending upon the longitude
of the moon’s node.  The factor f for any single constituent, thercfore,
passes through a cycle of values.  The change being slow, it is cus-
tomary to take the value as of the middle of the year for which the
predictions are being made and assume this as a constant for the entirve
year. The error resulting from this assumption is practically negli-
oible.  Each constituent has its own set of values for f, but these
values are the same for all localitics and have been compiled for
convenient use in table 14 for the middle of cach year from 1850 to
1999,

347. The quantity @ represents the angular speed of any constituent
per unit of time. In the application of formulas (451) and (452) to
the predietion of tides this 1s usually given in degrees per mean solar
hour, the unit of ¢ being taken as the mean solar hour.  The ralucs
of the speeds of the different constituents have been caleulated from
astronomical data by formulas devived from the development of the
tide-producing foree which has already been discussed,  These speeds
have been compiled in table 2 and “are cssentially constant for all
times and places.  The quantity (Ve-bw) is the value of the equilib-
rium argument of a constituent at the initial instant from which the
value of ¢ is reckoned; that is, when ¢ equals zero.  In the prediction
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ol tides this initial epoch is usually taken at the midnight beginning
the year for which the predlct}om are to be made. In strictness the
V7, or uniformily varying portion of the argument alone, refers to the
initial epoch, while ho u, or slow variation duc to Chanoo in the
longitude of the moon’s nodo is taken as of the middle of the period
of prmlmhon and assumed Lo vao this value as a constant for the
entire period.  The quantity (V,-Fu) is different for each constituent
and is also different for cach initial epoch and for different longitudes
on the earth. In table 15 there have been 00111{)11(\({ the ve th(\w of
this quantity for the beginning of e 1(*[1 vear from 1850 to 2000 for the
the i(momx( ¢ of Greenwich. The values may b(\ readily modified to
adapt them to other initial epochs an(l other longitudes.
&48 Liet

L=west longitude in degrees of station for which predictions
are desived.
Se=west longibude in degrees of time meridian used at this
station.
I or cast longitude, L and & will have negative values.
Now let

p==0 when referring to the long-period constituents
1 when referring to the diurnal constit uents.
2 when referring to the semidiurnal constituents, ete.

then p will be the coceflicient of the quantity 7 in the equilibrium
arguments,  Now, 7'is the hour angle of the mean sun and is the only
gquantity in these arguments that is o function of the longitude of the
place of observation or of pr ediction. At any given instant of time
the difference between Hw alues of the hour angle 7'at two stations
will be equal to hnr difference in longitude of the stations. I, there-
i'm(‘ the value of the argument (1, 7(3 for any constituent at any

iven instant has been computed for the me ulxm of (mwm ich, the
<(>uuium m refer (hx“ argument for the same instant to a n[}(o in
fongitude L° west of {x[(‘(‘ nwich will 1‘)(\ = pla, the negative sign being
necessary as the v alm\ o T (Ivu(\(inm as the west lon gitude increases.

349. The instant uf time to which each of the tabular values of
the Greenwich (Vo-ba)'s of table 15 refors s the 0 hour of the Groen-
wich mean civil time at the beginning of a calendar vear. In the
predictions of the tides at any station it is desitable to take as the
mitial epoch the 0 hour of the standard or loeal time customarily
tsed at that q Lion. i" lwtol'mv the longitude of the time merid-
in used s 8 west of Greenwich, the initial epocl of the pw[ clions
will usually be S/15 mean solay ho irs later than the instant to which
ifh.(‘ tabular {rreenwich (Vo-tae)'s are u Torred.

350, Tn lormulas (451) and (452) the symbol @ is the genceal desig-
nation of the speed of any con m,xfuum that is to s ay, it s the houriy
rate of change in the argument.  The difference in the argunient due
to a di [?(\mncu of S/15 hours in the initial e poch is Hmvmw WS /h
degrees. The total correction to the dbul(u Greenwich (Vi u) of
any year in order to obtain the local (1y-Fa) for a )ldu‘ in longitude
L west at an initial epoch ol 0 hours of time me udun S west at the
beginning of the same calendar year is
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The general expression for the angles of (451) and (452) may now
be written

at+ (Vot+u) —r=at-Greenwich (Vo-t-u) +%§ Lk (454}

(453)

351. In order to avoid the nccessity of applying the corrections
for longitude and initial epoch to the Greenwich (Viy-+u)’s for each
year, these corrections may be applied once for all to the «'s.

Lt

%§-prK:~x’ (455)
Then (454) may be written
at-+ (Vo-tu) —x=at+ Greenwich (Vo-+u) —«’ (456)

Thus, by applying the corrections indicated in (455) to the «'s for
any station, a modified set of epochs is obtained. These will remain
the same year after year and permit the direct use of the tabular
Greenwich (Vo-+u)’s in determining the actual constituent phases at
the beginning of each calendar year.

352, Let

Greenwich (Vy+u)—«" =« (457)
then formulas (451) and (452) may be written
h=Hy+ 37 fH cos (at-+a) (458)
for height of tide at any time, and
S af H sin (at-a)=0 (459)

for times of high and low waters. Formula (458) may be casily
solved for any single value of ¢, but for many values of { as are neces-
sary in the predictions of the tides for a year at any station the labor
involved by an ordinary solution would be very great. Formula
(459) can not, in general, be solved by rigorous methods. The in-
vention of tide-predicting machines has rendered the solution of both
formulas a comparatively simple matter.

TIDE-PREDICTING MACHINE

353. The first tide-predicting machine was designed by Sir William
Thomson (afterwards Lord Kelvin) and was made in 1873 under the
auspices of the British Association for the Advancement of Science.
This was an integrating machine designed to compute the height of
the tide in accordance with formula (458). It provided for the sum-
mation of 10 of the principal constituents, and the resulting pre-
dicted heights were registered by a curve automatically traced by
the machine. This machine is deseribed in part 1 of Thomson and
Tait’s Natural Philosophy, cdition of 1879. Several other tide-
predicting machines designed upon the same general principles but
providing for an incrcased number of constituents were afterwards
constructed.
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354. The first tide-predicting machine used in the United States was
designed by William Ferrel, of the U. 8. Coast and Geodetic Survey.
This machine, which was completed in 1882, was based upon modified
formulas and differed somewhat in design from any other machine
that has ever been constructed. No curve was traced, but both the
times and heights of the high and low waters were indicated directly
by scales on the machine. The intermediate heights of the tide could
be obtained only indirectly. A description of this machine is given:
in the report of the Coast and Geodetic Survey for the year 1883.

355. The first machine made to compute simultancously the height
of the tide and the times of high and low waters as represented by
formulas (458) and (459), respectively, was designed and constructed
in the office of the Coast and Geodetic Survey. It was completed in.
1910 and is known as the United States Coast and Geodetic Survey
tide-predicting machine No. 2. The machine sums simultancously
the terms of formulas (458) and (459) and registers successive heights
of the tide by the movement of a pointer over a dial and also graphi-
cally by a curve automatically traced on a moving strip of paper.
The times of high and low waters determined by the values of ¢ which
satisly equation (459) are indicated both by an automatic stopping
of the machine and also by check marks on the graphic record.

356. The general appearance of the machine is illustrated by figure
21. 1t is about 11 feet long, 2 feet wide, and 6 feet high, and weighs
approximately 2,500 pounds. 'The principal features are: First, the
supporting [ramework; second, & system of gearing by means of which
shafts representing the different constituents are made to rotate with
angular speeds proportional to the actual speeds of the constituents;
third, a system of cranks and sliding frames for obtaining harmonic
motion; fourth, summation chains connecting the individual constitu-
ent elements, by means of which the sums of the harmonic terms of
formulas (458) and (459) are transmitted to the recording devices;
fifth, a system of dials and pointers for indicating in & convenient man-
ner the height of the tide for successive instants of time and also the
time of the high and low waters; sixth, a tide curve or graphic represen-
tation of the tide automatically constructed by the machine. The
machine 1s designed to take account of the 37 constituents listed i
table 38, including 32 short-period and 5 long-period constituents.

357. The heavy cast-iron base of the machine, which includes the
operator’s desk, has an extreme length of 11 feet and is 2 feet wide.
This forms a very substantial foundation for the superstructure,
increasing its stability and thereby diminishing errors that might
result from a lack of rigidity in the fixed parts. On the left side of
the desk is located the hand crank for applying the power (7, fig. 24),
and under the desk are the primary gears for setting in motion the
various parts of the machine.  The superstructure is in three sections,
each consisting of parallel hard-rolled brass plates held from 6 to 7
inches apart by brass bolts. Between these plates are located the
shafts and gears that govern the motion of the different parts of the
machine.

358. The front section, or dial case, rests upon the desk facing the
operator and contains the apparatus for indicating and registering
the results obtained by the machine.  The middle seetion rests upon &
depression in the base and contains the mechanism for the harmonie
motions for the principal constituents M, 5,, K, O, Ny, and My, The
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rear '«suti(m contains the mechanism for the harmonic motions for
the remaining 31 constituents for which the machine provides.

359, The angular motions of the individual constituents, as indicated
by the quantity af in fmmula& (458) and (459), are represented in the
nm(lmw by the rotation of short horizontal shafts having their bear-
ings in the parallel plates, All of these constituent shalts are con-
nected by a system of gearing with the hand crank at the left of the
dial case and also with the time- registering dials, so that when the
machine is in operation the motion of cach of these shalts will be
pmpmllonai to the speed a of the corres ponding constituent, and for
any interval of time or inerement in ¢ as indicated by the time dials
the amount of angular motion in any constituent slmt will equal
the inerement in the product at Oouosp{m(lmﬂ o that vomutuont

260. Bince the corresponding angles in formulas (406) and (459) are
identienl for all values of #, the motion provided bv the gearing will be
applicable alike to the solution of both formulas. The mechanism
for the summation of the terms of formula (458) is situated on the side
ol the machine at the left of the operator, and I for conventence this
aul(‘ of the machine is ealled the “height side” (fig, 21), and the meeh-
anism [or the summation of the terms of formula (459) is on the right-
band side of the machine, which is designated as the “time side”
(fig. ‘J,Z

361, iui Lo 37 are given the details of the gener ';11 gearing from the
hand- ()1)(\ rating erank to the main vertical shalts, toget ther with the
dotails of ail the gearing m the front section or dial case. Ttwill be
aoted that S0 (M. 25) is the main vertieal shalt of the di l e and
s connected through the releasable gears o the hour hand, the
minute hand, and the (lz\_x <l al, respoeetively,  The veleasable gears
permit the mhus ment of these indicators to any time desired. After
an oviginal adjustment is made so that the hour and minute hand will
each read O at Hw\ ame instant that the day dial indicates the begin-
ning of a duy, lurther ad]w ment \\xll in general, be unnecessary, as
the cearing i ﬂl a1l enuge the indieators to maintain a consistent
relation Hlmugghm (b the vear, and by use of the hand-operating crank
the entire system may be made to indicate any time desived, The
period of the hour-hand shalt is 24 dial hours, and the hand moves
over a dial eraduated accordingly (3, fig. 23). The minute-hand
ghalt, with a pm‘i()d of 1 dial hour, moves over a dinl graduated into
60 minutes (2, fg. 23}

262, The day dind, which s about 10 in(*hw in dinmeter, s eraduated

Jino
inte 3606 parts to represen { the 366 davs i ;x leap vear.  The names of
the months and nu mxal to mim\ ¢ overy fifth day of cach month are
nseribed on the fuce of the dinl. This dmi i loeated just back of the
front plate or face of the machine. i in which there is an ave-shaped open-
ing ik ough which the oraduntions upnwr\n ting nearly two months
are visible at zm) one time (4, e, 23)0 The progress of the dayvs as the
machine is operated is ndien ted by the mmtlon of this dial past an

index or pointer just below the oponm (6, fie. 23). This pointer is
securced Lo 2 short shalt which carries at its inner end a lever arm with
a pin roaching Lm({m the lower edee of the day di ial, :ISLJIII\( which it 1s
prossed by a light spring. A portion of the edge of the dial equal to
the angular